Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{27}a^{3}+3^{-2}a^{2}+3^{1}a+3^{0}\right)\left(-9\right)a^{2}+a^{2}\left(a^{2}+27a+9\right)+1
Calculate 3 to the power of -3 and get \frac{1}{27}.
\left(\frac{1}{27}a^{3}+\frac{1}{9}a^{2}+3^{1}a+3^{0}\right)\left(-9\right)a^{2}+a^{2}\left(a^{2}+27a+9\right)+1
Calculate 3 to the power of -2 and get \frac{1}{9}.
\left(\frac{1}{27}a^{3}+\frac{1}{9}a^{2}+3a+3^{0}\right)\left(-9\right)a^{2}+a^{2}\left(a^{2}+27a+9\right)+1
Calculate 3 to the power of 1 and get 3.
\left(\frac{1}{27}a^{3}+\frac{1}{9}a^{2}+3a+1\right)\left(-9\right)a^{2}+a^{2}\left(a^{2}+27a+9\right)+1
Calculate 3 to the power of 0 and get 1.
\left(-\frac{1}{3}a^{3}-a^{2}-27a-9\right)a^{2}+a^{2}\left(a^{2}+27a+9\right)+1
Use the distributive property to multiply \frac{1}{27}a^{3}+\frac{1}{9}a^{2}+3a+1 by -9.
-\frac{1}{3}a^{5}-a^{4}-27a^{3}-9a^{2}+a^{2}\left(a^{2}+27a+9\right)+1
Use the distributive property to multiply -\frac{1}{3}a^{3}-a^{2}-27a-9 by a^{2}.
-\frac{1}{3}a^{5}-a^{4}-27a^{3}-9a^{2}+a^{4}+27a^{3}+9a^{2}+1
Use the distributive property to multiply a^{2} by a^{2}+27a+9.
-\frac{1}{3}a^{5}-27a^{3}-9a^{2}+27a^{3}+9a^{2}+1
Combine -a^{4} and a^{4} to get 0.
-\frac{1}{3}a^{5}-9a^{2}+9a^{2}+1
Combine -27a^{3} and 27a^{3} to get 0.
-\frac{1}{3}a^{5}+1
Combine -9a^{2} and 9a^{2} to get 0.
\frac{-\left(a^{3}+3a^{2}+81a+27\right)a^{2}+3a^{2}\left(a^{2}+27a+9\right)+3}{3}
Factor out \frac{1}{3}. Polynomial -a^{5}+3 is not factored since it does not have any rational roots.