Solve for x (complex solution)
x=\frac{-\sqrt{31}i-1}{2}\approx -0.5-2.783882181i
x=\frac{-1+\sqrt{31}i}{2}\approx -0.5+2.783882181i
Graph
Share
Copied to clipboard
6-x-x^{2}=14
Use the distributive property to multiply 3+x by 2-x and combine like terms.
6-x-x^{2}-14=0
Subtract 14 from both sides.
-8-x-x^{2}=0
Subtract 14 from 6 to get -8.
-x^{2}-x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-8\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-8\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1-32}}{2\left(-1\right)}
Multiply 4 times -8.
x=\frac{-\left(-1\right)±\sqrt{-31}}{2\left(-1\right)}
Add 1 to -32.
x=\frac{-\left(-1\right)±\sqrt{31}i}{2\left(-1\right)}
Take the square root of -31.
x=\frac{1±\sqrt{31}i}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{31}i}{-2}
Multiply 2 times -1.
x=\frac{1+\sqrt{31}i}{-2}
Now solve the equation x=\frac{1±\sqrt{31}i}{-2} when ± is plus. Add 1 to i\sqrt{31}.
x=\frac{-\sqrt{31}i-1}{2}
Divide 1+i\sqrt{31} by -2.
x=\frac{-\sqrt{31}i+1}{-2}
Now solve the equation x=\frac{1±\sqrt{31}i}{-2} when ± is minus. Subtract i\sqrt{31} from 1.
x=\frac{-1+\sqrt{31}i}{2}
Divide 1-i\sqrt{31} by -2.
x=\frac{-\sqrt{31}i-1}{2} x=\frac{-1+\sqrt{31}i}{2}
The equation is now solved.
6-x-x^{2}=14
Use the distributive property to multiply 3+x by 2-x and combine like terms.
-x-x^{2}=14-6
Subtract 6 from both sides.
-x-x^{2}=8
Subtract 6 from 14 to get 8.
-x^{2}-x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-x}{-1}=\frac{8}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{1}{-1}\right)x=\frac{8}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+x=\frac{8}{-1}
Divide -1 by -1.
x^{2}+x=-8
Divide 8 by -1.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-8+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+x+\frac{1}{4}=-8+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+x+\frac{1}{4}=-\frac{31}{4}
Add -8 to \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=-\frac{31}{4}
Factor x^{2}+x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-\frac{31}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}=\frac{\sqrt{31}i}{2} x+\frac{1}{2}=-\frac{\sqrt{31}i}{2}
Simplify.
x=\frac{-1+\sqrt{31}i}{2} x=\frac{-\sqrt{31}i-1}{2}
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}