Skip to main content
Solve for X
Tick mark Image

Similar Problems from Web Search

Share

\left(3+2i\right)X=2\times 2+2\times \left(-3i\right)+4i\times 2+4\left(-3\right)i^{2}
Multiply complex numbers 2+4i and 2-3i like you multiply binomials.
\left(3+2i\right)X=2\times 2+2\times \left(-3i\right)+4i\times 2+4\left(-3\right)\left(-1\right)
By definition, i^{2} is -1.
\left(3+2i\right)X=4-6i+8i+12
Do the multiplications in 2\times 2+2\times \left(-3i\right)+4i\times 2+4\left(-3\right)\left(-1\right).
\left(3+2i\right)X=4+12+\left(-6+8\right)i
Combine the real and imaginary parts in 4-6i+8i+12.
\left(3+2i\right)X=16+2i
Do the additions in 4+12+\left(-6+8\right)i.
X=\frac{16+2i}{3+2i}
Divide both sides by 3+2i.
X=\frac{\left(16+2i\right)\left(3-2i\right)}{\left(3+2i\right)\left(3-2i\right)}
Multiply both numerator and denominator of \frac{16+2i}{3+2i} by the complex conjugate of the denominator, 3-2i.
X=\frac{\left(16+2i\right)\left(3-2i\right)}{3^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
X=\frac{\left(16+2i\right)\left(3-2i\right)}{13}
By definition, i^{2} is -1. Calculate the denominator.
X=\frac{16\times 3+16\times \left(-2i\right)+2i\times 3+2\left(-2\right)i^{2}}{13}
Multiply complex numbers 16+2i and 3-2i like you multiply binomials.
X=\frac{16\times 3+16\times \left(-2i\right)+2i\times 3+2\left(-2\right)\left(-1\right)}{13}
By definition, i^{2} is -1.
X=\frac{48-32i+6i+4}{13}
Do the multiplications in 16\times 3+16\times \left(-2i\right)+2i\times 3+2\left(-2\right)\left(-1\right).
X=\frac{48+4+\left(-32+6\right)i}{13}
Combine the real and imaginary parts in 48-32i+6i+4.
X=\frac{52-26i}{13}
Do the additions in 48+4+\left(-32+6\right)i.
X=4-2i
Divide 52-26i by 13 to get 4-2i.