Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3^{2}-\left(2\sqrt{2}\right)^{2}-\sqrt{54}+\sqrt{6}
Consider \left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
9-\left(2\sqrt{2}\right)^{2}-\sqrt{54}+\sqrt{6}
Calculate 3 to the power of 2 and get 9.
9-2^{2}\left(\sqrt{2}\right)^{2}-\sqrt{54}+\sqrt{6}
Expand \left(2\sqrt{2}\right)^{2}.
9-4\left(\sqrt{2}\right)^{2}-\sqrt{54}+\sqrt{6}
Calculate 2 to the power of 2 and get 4.
9-4\times 2-\sqrt{54}+\sqrt{6}
The square of \sqrt{2} is 2.
9-8-\sqrt{54}+\sqrt{6}
Multiply 4 and 2 to get 8.
1-\sqrt{54}+\sqrt{6}
Subtract 8 from 9 to get 1.
1-3\sqrt{6}+\sqrt{6}
Factor 54=3^{2}\times 6. Rewrite the square root of the product \sqrt{3^{2}\times 6} as the product of square roots \sqrt{3^{2}}\sqrt{6}. Take the square root of 3^{2}.
1-2\sqrt{6}
Combine -3\sqrt{6} and \sqrt{6} to get -2\sqrt{6}.