Evaluate
\frac{29}{14}\approx 2.071428571
Factor
\frac{29}{2 \cdot 7} = 2\frac{1}{14} = 2.0714285714285716
Share
Copied to clipboard
\frac{3+\frac{4+3}{4}-\frac{2\times 3+1}{3}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Multiply 1 and 4 to get 4.
\frac{3+\frac{7}{4}-\frac{2\times 3+1}{3}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Add 4 and 3 to get 7.
\frac{\frac{12}{4}+\frac{7}{4}-\frac{2\times 3+1}{3}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Convert 3 to fraction \frac{12}{4}.
\frac{\frac{12+7}{4}-\frac{2\times 3+1}{3}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Since \frac{12}{4} and \frac{7}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{19}{4}-\frac{2\times 3+1}{3}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Add 12 and 7 to get 19.
\frac{\frac{19}{4}-\frac{6+1}{3}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Multiply 2 and 3 to get 6.
\frac{\frac{19}{4}-\frac{7}{3}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Add 6 and 1 to get 7.
\frac{\frac{57}{12}-\frac{28}{12}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Least common multiple of 4 and 3 is 12. Convert \frac{19}{4} and \frac{7}{3} to fractions with denominator 12.
\frac{\frac{57-28}{12}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Since \frac{57}{12} and \frac{28}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{29}{12}}{\frac{2}{3}\times \frac{1\times 4+3}{4}}
Subtract 28 from 57 to get 29.
\frac{\frac{29}{12}}{\frac{2}{3}\times \frac{4+3}{4}}
Multiply 1 and 4 to get 4.
\frac{\frac{29}{12}}{\frac{2}{3}\times \frac{7}{4}}
Add 4 and 3 to get 7.
\frac{\frac{29}{12}}{\frac{2\times 7}{3\times 4}}
Multiply \frac{2}{3} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{29}{12}}{\frac{14}{12}}
Do the multiplications in the fraction \frac{2\times 7}{3\times 4}.
\frac{\frac{29}{12}}{\frac{7}{6}}
Reduce the fraction \frac{14}{12} to lowest terms by extracting and canceling out 2.
\frac{29}{12}\times \frac{6}{7}
Divide \frac{29}{12} by \frac{7}{6} by multiplying \frac{29}{12} by the reciprocal of \frac{7}{6}.
\frac{29\times 6}{12\times 7}
Multiply \frac{29}{12} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{174}{84}
Do the multiplications in the fraction \frac{29\times 6}{12\times 7}.
\frac{29}{14}
Reduce the fraction \frac{174}{84} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}