( 3 + \sqrt { 8 } ) ( 3 - \sqrt { 8 } ) [ ( 3 + \sqrt { 8 } - ( 3 - \sqrt { 8 } ) ]
Evaluate
4\sqrt{2}\approx 5.656854249
Share
Copied to clipboard
\left(3+2\sqrt{2}\right)\left(3-\sqrt{8}\right)\left(3+\sqrt{8}-\left(3-\sqrt{8}\right)\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(3+\sqrt{8}-\left(3-\sqrt{8}\right)\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}-\left(3-\sqrt{8}\right)\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}-\left(3-2\sqrt{2}\right)\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}-3-\left(-2\sqrt{2}\right)\right)
To find the opposite of 3-2\sqrt{2}, find the opposite of each term.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(2\sqrt{2}-\left(-2\sqrt{2}\right)\right)
Subtract 3 from 3 to get 0.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(2\sqrt{2}+2\sqrt{2}\right)
The opposite of -2\sqrt{2} is 2\sqrt{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\times 4\sqrt{2}
Combine 2\sqrt{2} and 2\sqrt{2} to get 4\sqrt{2}.
\left(9-6\sqrt{2}+6\sqrt{2}-4\left(\sqrt{2}\right)^{2}\right)\times 4\sqrt{2}
Apply the distributive property by multiplying each term of 3+2\sqrt{2} by each term of 3-2\sqrt{2}.
\left(9-4\left(\sqrt{2}\right)^{2}\right)\times 4\sqrt{2}
Combine -6\sqrt{2} and 6\sqrt{2} to get 0.
\left(9-4\times 2\right)\times 4\sqrt{2}
The square of \sqrt{2} is 2.
\left(9-8\right)\times 4\sqrt{2}
Multiply -4 and 2 to get -8.
1\times 4\sqrt{2}
Subtract 8 from 9 to get 1.
4\sqrt{2}
Multiply 1 and 4 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}