Solve for x
x=150
Graph
Share
Copied to clipboard
50\left(2900-x-2500\right)\left(8+4\times \frac{x}{50}\right)=250000
Multiply both sides of the equation by 50.
50\left(400-x\right)\left(8+4\times \frac{x}{50}\right)=250000
Subtract 2500 from 2900 to get 400.
50\left(400-x\right)\left(8+\frac{4x}{50}\right)=250000
Express 4\times \frac{x}{50} as a single fraction.
\left(20000-50x\right)\left(8+\frac{4x}{50}\right)=250000
Use the distributive property to multiply 50 by 400-x.
\left(20000-50x\right)\left(8+\frac{2}{25}x\right)=250000
Divide 4x by 50 to get \frac{2}{25}x.
160000+20000\times \frac{2}{25}x-400x-50x\times \frac{2}{25}x=250000
Apply the distributive property by multiplying each term of 20000-50x by each term of 8+\frac{2}{25}x.
160000+20000\times \frac{2}{25}x-400x-50x^{2}\times \frac{2}{25}=250000
Multiply x and x to get x^{2}.
160000+\frac{20000\times 2}{25}x-400x-50x^{2}\times \frac{2}{25}=250000
Express 20000\times \frac{2}{25} as a single fraction.
160000+\frac{40000}{25}x-400x-50x^{2}\times \frac{2}{25}=250000
Multiply 20000 and 2 to get 40000.
160000+1600x-400x-50x^{2}\times \frac{2}{25}=250000
Divide 40000 by 25 to get 1600.
160000+1200x-50x^{2}\times \frac{2}{25}=250000
Combine 1600x and -400x to get 1200x.
160000+1200x+\frac{-50\times 2}{25}x^{2}=250000
Express -50\times \frac{2}{25} as a single fraction.
160000+1200x+\frac{-100}{25}x^{2}=250000
Multiply -50 and 2 to get -100.
160000+1200x-4x^{2}=250000
Divide -100 by 25 to get -4.
160000+1200x-4x^{2}-250000=0
Subtract 250000 from both sides.
-90000+1200x-4x^{2}=0
Subtract 250000 from 160000 to get -90000.
-4x^{2}+1200x-90000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1200±\sqrt{1200^{2}-4\left(-4\right)\left(-90000\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 1200 for b, and -90000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1200±\sqrt{1440000-4\left(-4\right)\left(-90000\right)}}{2\left(-4\right)}
Square 1200.
x=\frac{-1200±\sqrt{1440000+16\left(-90000\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-1200±\sqrt{1440000-1440000}}{2\left(-4\right)}
Multiply 16 times -90000.
x=\frac{-1200±\sqrt{0}}{2\left(-4\right)}
Add 1440000 to -1440000.
x=-\frac{1200}{2\left(-4\right)}
Take the square root of 0.
x=-\frac{1200}{-8}
Multiply 2 times -4.
x=150
Divide -1200 by -8.
50\left(2900-x-2500\right)\left(8+4\times \frac{x}{50}\right)=250000
Multiply both sides of the equation by 50.
50\left(400-x\right)\left(8+4\times \frac{x}{50}\right)=250000
Subtract 2500 from 2900 to get 400.
50\left(400-x\right)\left(8+\frac{4x}{50}\right)=250000
Express 4\times \frac{x}{50} as a single fraction.
\left(20000-50x\right)\left(8+\frac{4x}{50}\right)=250000
Use the distributive property to multiply 50 by 400-x.
\left(20000-50x\right)\left(8+\frac{2}{25}x\right)=250000
Divide 4x by 50 to get \frac{2}{25}x.
160000+20000\times \frac{2}{25}x-400x-50x\times \frac{2}{25}x=250000
Apply the distributive property by multiplying each term of 20000-50x by each term of 8+\frac{2}{25}x.
160000+20000\times \frac{2}{25}x-400x-50x^{2}\times \frac{2}{25}=250000
Multiply x and x to get x^{2}.
160000+\frac{20000\times 2}{25}x-400x-50x^{2}\times \frac{2}{25}=250000
Express 20000\times \frac{2}{25} as a single fraction.
160000+\frac{40000}{25}x-400x-50x^{2}\times \frac{2}{25}=250000
Multiply 20000 and 2 to get 40000.
160000+1600x-400x-50x^{2}\times \frac{2}{25}=250000
Divide 40000 by 25 to get 1600.
160000+1200x-50x^{2}\times \frac{2}{25}=250000
Combine 1600x and -400x to get 1200x.
160000+1200x+\frac{-50\times 2}{25}x^{2}=250000
Express -50\times \frac{2}{25} as a single fraction.
160000+1200x+\frac{-100}{25}x^{2}=250000
Multiply -50 and 2 to get -100.
160000+1200x-4x^{2}=250000
Divide -100 by 25 to get -4.
1200x-4x^{2}=250000-160000
Subtract 160000 from both sides.
1200x-4x^{2}=90000
Subtract 160000 from 250000 to get 90000.
-4x^{2}+1200x=90000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4x^{2}+1200x}{-4}=\frac{90000}{-4}
Divide both sides by -4.
x^{2}+\frac{1200}{-4}x=\frac{90000}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}-300x=\frac{90000}{-4}
Divide 1200 by -4.
x^{2}-300x=-22500
Divide 90000 by -4.
x^{2}-300x+\left(-150\right)^{2}=-22500+\left(-150\right)^{2}
Divide -300, the coefficient of the x term, by 2 to get -150. Then add the square of -150 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-300x+22500=-22500+22500
Square -150.
x^{2}-300x+22500=0
Add -22500 to 22500.
\left(x-150\right)^{2}=0
Factor x^{2}-300x+22500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-150\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-150=0 x-150=0
Simplify.
x=150 x=150
Add 150 to both sides of the equation.
x=150
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}