Evaluate
1201
Factor
1201
Share
Copied to clipboard
\frac{\frac{17340}{6}+\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}{\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}
Convert 2890 to fraction \frac{17340}{6}.
\frac{\frac{17340+5}{6}+\frac{7}{8}+\frac{7}{10}}{\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}
Since \frac{17340}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{17345}{6}+\frac{7}{8}+\frac{7}{10}}{\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}
Add 17340 and 5 to get 17345.
\frac{\frac{69380}{24}+\frac{21}{24}+\frac{7}{10}}{\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}
Least common multiple of 6 and 8 is 24. Convert \frac{17345}{6} and \frac{7}{8} to fractions with denominator 24.
\frac{\frac{69380+21}{24}+\frac{7}{10}}{\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}
Since \frac{69380}{24} and \frac{21}{24} have the same denominator, add them by adding their numerators.
\frac{\frac{69401}{24}+\frac{7}{10}}{\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}
Add 69380 and 21 to get 69401.
\frac{\frac{347005}{120}+\frac{84}{120}}{\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}
Least common multiple of 24 and 10 is 120. Convert \frac{69401}{24} and \frac{7}{10} to fractions with denominator 120.
\frac{\frac{347005+84}{120}}{\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}
Since \frac{347005}{120} and \frac{84}{120} have the same denominator, add them by adding their numerators.
\frac{\frac{347089}{120}}{\frac{5}{6}+\frac{7}{8}+\frac{7}{10}}
Add 347005 and 84 to get 347089.
\frac{\frac{347089}{120}}{\frac{20}{24}+\frac{21}{24}+\frac{7}{10}}
Least common multiple of 6 and 8 is 24. Convert \frac{5}{6} and \frac{7}{8} to fractions with denominator 24.
\frac{\frac{347089}{120}}{\frac{20+21}{24}+\frac{7}{10}}
Since \frac{20}{24} and \frac{21}{24} have the same denominator, add them by adding their numerators.
\frac{\frac{347089}{120}}{\frac{41}{24}+\frac{7}{10}}
Add 20 and 21 to get 41.
\frac{\frac{347089}{120}}{\frac{205}{120}+\frac{84}{120}}
Least common multiple of 24 and 10 is 120. Convert \frac{41}{24} and \frac{7}{10} to fractions with denominator 120.
\frac{\frac{347089}{120}}{\frac{205+84}{120}}
Since \frac{205}{120} and \frac{84}{120} have the same denominator, add them by adding their numerators.
\frac{\frac{347089}{120}}{\frac{289}{120}}
Add 205 and 84 to get 289.
\frac{347089}{120}\times \frac{120}{289}
Divide \frac{347089}{120} by \frac{289}{120} by multiplying \frac{347089}{120} by the reciprocal of \frac{289}{120}.
\frac{347089\times 120}{120\times 289}
Multiply \frac{347089}{120} times \frac{120}{289} by multiplying numerator times numerator and denominator times denominator.
\frac{347089}{289}
Cancel out 120 in both numerator and denominator.
1201
Divide 347089 by 289 to get 1201.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}