Solve for x
x = \frac{\sqrt{11569} + 137}{10} \approx 24.455928598
x = \frac{137 - \sqrt{11569}}{10} \approx 2.944071402
Graph
Share
Copied to clipboard
280x-10x^{2}-6x=720
Use the distributive property to multiply 280-10x by x.
274x-10x^{2}=720
Combine 280x and -6x to get 274x.
274x-10x^{2}-720=0
Subtract 720 from both sides.
-10x^{2}+274x-720=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-274±\sqrt{274^{2}-4\left(-10\right)\left(-720\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 274 for b, and -720 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-274±\sqrt{75076-4\left(-10\right)\left(-720\right)}}{2\left(-10\right)}
Square 274.
x=\frac{-274±\sqrt{75076+40\left(-720\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-274±\sqrt{75076-28800}}{2\left(-10\right)}
Multiply 40 times -720.
x=\frac{-274±\sqrt{46276}}{2\left(-10\right)}
Add 75076 to -28800.
x=\frac{-274±2\sqrt{11569}}{2\left(-10\right)}
Take the square root of 46276.
x=\frac{-274±2\sqrt{11569}}{-20}
Multiply 2 times -10.
x=\frac{2\sqrt{11569}-274}{-20}
Now solve the equation x=\frac{-274±2\sqrt{11569}}{-20} when ± is plus. Add -274 to 2\sqrt{11569}.
x=\frac{137-\sqrt{11569}}{10}
Divide -274+2\sqrt{11569} by -20.
x=\frac{-2\sqrt{11569}-274}{-20}
Now solve the equation x=\frac{-274±2\sqrt{11569}}{-20} when ± is minus. Subtract 2\sqrt{11569} from -274.
x=\frac{\sqrt{11569}+137}{10}
Divide -274-2\sqrt{11569} by -20.
x=\frac{137-\sqrt{11569}}{10} x=\frac{\sqrt{11569}+137}{10}
The equation is now solved.
280x-10x^{2}-6x=720
Use the distributive property to multiply 280-10x by x.
274x-10x^{2}=720
Combine 280x and -6x to get 274x.
-10x^{2}+274x=720
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+274x}{-10}=\frac{720}{-10}
Divide both sides by -10.
x^{2}+\frac{274}{-10}x=\frac{720}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-\frac{137}{5}x=\frac{720}{-10}
Reduce the fraction \frac{274}{-10} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{137}{5}x=-72
Divide 720 by -10.
x^{2}-\frac{137}{5}x+\left(-\frac{137}{10}\right)^{2}=-72+\left(-\frac{137}{10}\right)^{2}
Divide -\frac{137}{5}, the coefficient of the x term, by 2 to get -\frac{137}{10}. Then add the square of -\frac{137}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{137}{5}x+\frac{18769}{100}=-72+\frac{18769}{100}
Square -\frac{137}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{137}{5}x+\frac{18769}{100}=\frac{11569}{100}
Add -72 to \frac{18769}{100}.
\left(x-\frac{137}{10}\right)^{2}=\frac{11569}{100}
Factor x^{2}-\frac{137}{5}x+\frac{18769}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{137}{10}\right)^{2}}=\sqrt{\frac{11569}{100}}
Take the square root of both sides of the equation.
x-\frac{137}{10}=\frac{\sqrt{11569}}{10} x-\frac{137}{10}=-\frac{\sqrt{11569}}{10}
Simplify.
x=\frac{\sqrt{11569}+137}{10} x=\frac{137-\sqrt{11569}}{10}
Add \frac{137}{10} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}