Solve for x
x=2\sqrt{31}+14\approx 25.135528726
x=14-2\sqrt{31}\approx 2.864471274
Graph
Share
Copied to clipboard
280x-10x^{2}=720
Use the distributive property to multiply 280-10x by x.
280x-10x^{2}-720=0
Subtract 720 from both sides.
-10x^{2}+280x-720=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-280±\sqrt{280^{2}-4\left(-10\right)\left(-720\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 280 for b, and -720 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-280±\sqrt{78400-4\left(-10\right)\left(-720\right)}}{2\left(-10\right)}
Square 280.
x=\frac{-280±\sqrt{78400+40\left(-720\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-280±\sqrt{78400-28800}}{2\left(-10\right)}
Multiply 40 times -720.
x=\frac{-280±\sqrt{49600}}{2\left(-10\right)}
Add 78400 to -28800.
x=\frac{-280±40\sqrt{31}}{2\left(-10\right)}
Take the square root of 49600.
x=\frac{-280±40\sqrt{31}}{-20}
Multiply 2 times -10.
x=\frac{40\sqrt{31}-280}{-20}
Now solve the equation x=\frac{-280±40\sqrt{31}}{-20} when ± is plus. Add -280 to 40\sqrt{31}.
x=14-2\sqrt{31}
Divide -280+40\sqrt{31} by -20.
x=\frac{-40\sqrt{31}-280}{-20}
Now solve the equation x=\frac{-280±40\sqrt{31}}{-20} when ± is minus. Subtract 40\sqrt{31} from -280.
x=2\sqrt{31}+14
Divide -280-40\sqrt{31} by -20.
x=14-2\sqrt{31} x=2\sqrt{31}+14
The equation is now solved.
280x-10x^{2}=720
Use the distributive property to multiply 280-10x by x.
-10x^{2}+280x=720
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+280x}{-10}=\frac{720}{-10}
Divide both sides by -10.
x^{2}+\frac{280}{-10}x=\frac{720}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-28x=\frac{720}{-10}
Divide 280 by -10.
x^{2}-28x=-72
Divide 720 by -10.
x^{2}-28x+\left(-14\right)^{2}=-72+\left(-14\right)^{2}
Divide -28, the coefficient of the x term, by 2 to get -14. Then add the square of -14 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-28x+196=-72+196
Square -14.
x^{2}-28x+196=124
Add -72 to 196.
\left(x-14\right)^{2}=124
Factor x^{2}-28x+196. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-14\right)^{2}}=\sqrt{124}
Take the square root of both sides of the equation.
x-14=2\sqrt{31} x-14=-2\sqrt{31}
Simplify.
x=2\sqrt{31}+14 x=14-2\sqrt{31}
Add 14 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}