( 28 - 53 ) \cdot 4 + ( 124 \% 4 - 30 \% 5 )
Evaluate
-\frac{4827}{50}=-96.54
Factor
-\frac{4827}{50} = -96\frac{27}{50} = -96.54
Share
Copied to clipboard
-25\times 4+\frac{124}{100}\times 4-\frac{30}{100}\times 5
Subtract 53 from 28 to get -25.
-100+\frac{124}{100}\times 4-\frac{30}{100}\times 5
Multiply -25 and 4 to get -100.
-100+\frac{31}{25}\times 4-\frac{30}{100}\times 5
Reduce the fraction \frac{124}{100} to lowest terms by extracting and canceling out 4.
-100+\frac{31\times 4}{25}-\frac{30}{100}\times 5
Express \frac{31}{25}\times 4 as a single fraction.
-100+\frac{124}{25}-\frac{30}{100}\times 5
Multiply 31 and 4 to get 124.
-100+\frac{124}{25}-\frac{3}{10}\times 5
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
-100+\frac{124}{25}-\frac{3\times 5}{10}
Express \frac{3}{10}\times 5 as a single fraction.
-100+\frac{124}{25}-\frac{15}{10}
Multiply 3 and 5 to get 15.
-100+\frac{124}{25}-\frac{3}{2}
Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
-100+\frac{248}{50}-\frac{75}{50}
Least common multiple of 25 and 2 is 50. Convert \frac{124}{25} and \frac{3}{2} to fractions with denominator 50.
-100+\frac{248-75}{50}
Since \frac{248}{50} and \frac{75}{50} have the same denominator, subtract them by subtracting their numerators.
-100+\frac{173}{50}
Subtract 75 from 248 to get 173.
-\frac{5000}{50}+\frac{173}{50}
Convert -100 to fraction -\frac{5000}{50}.
\frac{-5000+173}{50}
Since -\frac{5000}{50} and \frac{173}{50} have the same denominator, add them by adding their numerators.
-\frac{4827}{50}
Add -5000 and 173 to get -4827.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}