Solve for a (complex solution)
a=\sqrt{1346}-8\approx 28.687872656
a=-\left(\sqrt{1346}+8\right)\approx -44.687872656
Solve for a
a=\sqrt{1346}-8\approx 28.687872656
a=-\sqrt{1346}-8\approx -44.687872656
Share
Copied to clipboard
625+\left(4-a\right)^{2}=1.5a^{2}
Calculate 25 to the power of 2 and get 625.
625+16-8a+a^{2}=1.5a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-a\right)^{2}.
641-8a+a^{2}=1.5a^{2}
Add 625 and 16 to get 641.
641-8a+a^{2}-1.5a^{2}=0
Subtract 1.5a^{2} from both sides.
641-8a-0.5a^{2}=0
Combine a^{2} and -1.5a^{2} to get -0.5a^{2}.
-0.5a^{2}-8a+641=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-0.5\right)\times 641}}{2\left(-0.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.5 for a, -8 for b, and 641 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-8\right)±\sqrt{64-4\left(-0.5\right)\times 641}}{2\left(-0.5\right)}
Square -8.
a=\frac{-\left(-8\right)±\sqrt{64+2\times 641}}{2\left(-0.5\right)}
Multiply -4 times -0.5.
a=\frac{-\left(-8\right)±\sqrt{64+1282}}{2\left(-0.5\right)}
Multiply 2 times 641.
a=\frac{-\left(-8\right)±\sqrt{1346}}{2\left(-0.5\right)}
Add 64 to 1282.
a=\frac{8±\sqrt{1346}}{2\left(-0.5\right)}
The opposite of -8 is 8.
a=\frac{8±\sqrt{1346}}{-1}
Multiply 2 times -0.5.
a=\frac{\sqrt{1346}+8}{-1}
Now solve the equation a=\frac{8±\sqrt{1346}}{-1} when ± is plus. Add 8 to \sqrt{1346}.
a=-\left(\sqrt{1346}+8\right)
Divide 8+\sqrt{1346} by -1.
a=\frac{8-\sqrt{1346}}{-1}
Now solve the equation a=\frac{8±\sqrt{1346}}{-1} when ± is minus. Subtract \sqrt{1346} from 8.
a=\sqrt{1346}-8
Divide 8-\sqrt{1346} by -1.
a=-\left(\sqrt{1346}+8\right) a=\sqrt{1346}-8
The equation is now solved.
625+\left(4-a\right)^{2}=1.5a^{2}
Calculate 25 to the power of 2 and get 625.
625+16-8a+a^{2}=1.5a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-a\right)^{2}.
641-8a+a^{2}=1.5a^{2}
Add 625 and 16 to get 641.
641-8a+a^{2}-1.5a^{2}=0
Subtract 1.5a^{2} from both sides.
641-8a-0.5a^{2}=0
Combine a^{2} and -1.5a^{2} to get -0.5a^{2}.
-8a-0.5a^{2}=-641
Subtract 641 from both sides. Anything subtracted from zero gives its negation.
-0.5a^{2}-8a=-641
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.5a^{2}-8a}{-0.5}=-\frac{641}{-0.5}
Multiply both sides by -2.
a^{2}+\left(-\frac{8}{-0.5}\right)a=-\frac{641}{-0.5}
Dividing by -0.5 undoes the multiplication by -0.5.
a^{2}+16a=-\frac{641}{-0.5}
Divide -8 by -0.5 by multiplying -8 by the reciprocal of -0.5.
a^{2}+16a=1282
Divide -641 by -0.5 by multiplying -641 by the reciprocal of -0.5.
a^{2}+16a+8^{2}=1282+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+16a+64=1282+64
Square 8.
a^{2}+16a+64=1346
Add 1282 to 64.
\left(a+8\right)^{2}=1346
Factor a^{2}+16a+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+8\right)^{2}}=\sqrt{1346}
Take the square root of both sides of the equation.
a+8=\sqrt{1346} a+8=-\sqrt{1346}
Simplify.
a=\sqrt{1346}-8 a=-\sqrt{1346}-8
Subtract 8 from both sides of the equation.
625+\left(4-a\right)^{2}=1.5a^{2}
Calculate 25 to the power of 2 and get 625.
625+16-8a+a^{2}=1.5a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-a\right)^{2}.
641-8a+a^{2}=1.5a^{2}
Add 625 and 16 to get 641.
641-8a+a^{2}-1.5a^{2}=0
Subtract 1.5a^{2} from both sides.
641-8a-0.5a^{2}=0
Combine a^{2} and -1.5a^{2} to get -0.5a^{2}.
-0.5a^{2}-8a+641=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-0.5\right)\times 641}}{2\left(-0.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.5 for a, -8 for b, and 641 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-8\right)±\sqrt{64-4\left(-0.5\right)\times 641}}{2\left(-0.5\right)}
Square -8.
a=\frac{-\left(-8\right)±\sqrt{64+2\times 641}}{2\left(-0.5\right)}
Multiply -4 times -0.5.
a=\frac{-\left(-8\right)±\sqrt{64+1282}}{2\left(-0.5\right)}
Multiply 2 times 641.
a=\frac{-\left(-8\right)±\sqrt{1346}}{2\left(-0.5\right)}
Add 64 to 1282.
a=\frac{8±\sqrt{1346}}{2\left(-0.5\right)}
The opposite of -8 is 8.
a=\frac{8±\sqrt{1346}}{-1}
Multiply 2 times -0.5.
a=\frac{\sqrt{1346}+8}{-1}
Now solve the equation a=\frac{8±\sqrt{1346}}{-1} when ± is plus. Add 8 to \sqrt{1346}.
a=-\left(\sqrt{1346}+8\right)
Divide 8+\sqrt{1346} by -1.
a=\frac{8-\sqrt{1346}}{-1}
Now solve the equation a=\frac{8±\sqrt{1346}}{-1} when ± is minus. Subtract \sqrt{1346} from 8.
a=\sqrt{1346}-8
Divide 8-\sqrt{1346} by -1.
a=-\left(\sqrt{1346}+8\right) a=\sqrt{1346}-8
The equation is now solved.
625+\left(4-a\right)^{2}=1.5a^{2}
Calculate 25 to the power of 2 and get 625.
625+16-8a+a^{2}=1.5a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-a\right)^{2}.
641-8a+a^{2}=1.5a^{2}
Add 625 and 16 to get 641.
641-8a+a^{2}-1.5a^{2}=0
Subtract 1.5a^{2} from both sides.
641-8a-0.5a^{2}=0
Combine a^{2} and -1.5a^{2} to get -0.5a^{2}.
-8a-0.5a^{2}=-641
Subtract 641 from both sides. Anything subtracted from zero gives its negation.
-0.5a^{2}-8a=-641
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.5a^{2}-8a}{-0.5}=-\frac{641}{-0.5}
Multiply both sides by -2.
a^{2}+\left(-\frac{8}{-0.5}\right)a=-\frac{641}{-0.5}
Dividing by -0.5 undoes the multiplication by -0.5.
a^{2}+16a=-\frac{641}{-0.5}
Divide -8 by -0.5 by multiplying -8 by the reciprocal of -0.5.
a^{2}+16a=1282
Divide -641 by -0.5 by multiplying -641 by the reciprocal of -0.5.
a^{2}+16a+8^{2}=1282+8^{2}
Divide 16, the coefficient of the x term, by 2 to get 8. Then add the square of 8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+16a+64=1282+64
Square 8.
a^{2}+16a+64=1346
Add 1282 to 64.
\left(a+8\right)^{2}=1346
Factor a^{2}+16a+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+8\right)^{2}}=\sqrt{1346}
Take the square root of both sides of the equation.
a+8=\sqrt{1346} a+8=-\sqrt{1346}
Simplify.
a=\sqrt{1346}-8 a=-\sqrt{1346}-8
Subtract 8 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}