Solve for t
t = \frac{1081}{12} = 90\frac{1}{12} \approx 90.083333333
Share
Copied to clipboard
625+50t+t^{2}=85^{2}+\left(t-12.5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25+t\right)^{2}.
625+50t+t^{2}=7225+\left(t-12.5\right)^{2}
Calculate 85 to the power of 2 and get 7225.
625+50t+t^{2}=7225+t^{2}-25t+156.25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-12.5\right)^{2}.
625+50t+t^{2}=7381.25+t^{2}-25t
Add 7225 and 156.25 to get 7381.25.
625+50t+t^{2}-t^{2}=7381.25-25t
Subtract t^{2} from both sides.
625+50t=7381.25-25t
Combine t^{2} and -t^{2} to get 0.
625+50t+25t=7381.25
Add 25t to both sides.
625+75t=7381.25
Combine 50t and 25t to get 75t.
75t=7381.25-625
Subtract 625 from both sides.
75t=6756.25
Subtract 625 from 7381.25 to get 6756.25.
t=\frac{6756.25}{75}
Divide both sides by 75.
t=\frac{675625}{7500}
Expand \frac{6756.25}{75} by multiplying both numerator and the denominator by 100.
t=\frac{1081}{12}
Reduce the fraction \frac{675625}{7500} to lowest terms by extracting and canceling out 625.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}