Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

625+50t+t^{2}=85^{2}+\left(t-12.5\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25+t\right)^{2}.
625+50t+t^{2}=7225+\left(t-12.5\right)^{2}
Calculate 85 to the power of 2 and get 7225.
625+50t+t^{2}=7225+t^{2}-25t+156.25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(t-12.5\right)^{2}.
625+50t+t^{2}=7381.25+t^{2}-25t
Add 7225 and 156.25 to get 7381.25.
625+50t+t^{2}-t^{2}=7381.25-25t
Subtract t^{2} from both sides.
625+50t=7381.25-25t
Combine t^{2} and -t^{2} to get 0.
625+50t+25t=7381.25
Add 25t to both sides.
625+75t=7381.25
Combine 50t and 25t to get 75t.
75t=7381.25-625
Subtract 625 from both sides.
75t=6756.25
Subtract 625 from 7381.25 to get 6756.25.
t=\frac{6756.25}{75}
Divide both sides by 75.
t=\frac{675625}{7500}
Expand \frac{6756.25}{75} by multiplying both numerator and the denominator by 100.
t=\frac{1081}{12}
Reduce the fraction \frac{675625}{7500} to lowest terms by extracting and canceling out 625.