Solve for a (complex solution)
\left\{\begin{matrix}a=\frac{625\left(4+\frac{1}{d}\right)^{2}}{44x}\text{, }&d\neq 0\text{ and }x\neq 0\\a\in \mathrm{C}\text{, }&d=-\frac{1}{4}\text{ and }x=0\end{matrix}\right.
Solve for a
\left\{\begin{matrix}a=\frac{625\left(4+\frac{1}{d}\right)^{2}}{44x}\text{, }&d\neq 0\text{ and }x\neq 0\\a\in \mathrm{R}\text{, }&d=-\frac{1}{4}\text{ and }x=0\end{matrix}\right.
Solve for d (complex solution)
\left\{\begin{matrix}d=\frac{25\left(\sqrt{11ax}-50\right)}{2\left(2500-11ax\right)}\text{; }d=-\frac{25\left(\sqrt{11ax}+50\right)}{2\left(2500-11ax\right)}\text{, }&a=0\text{ or }x\neq \frac{2500}{11a}\\d=-\frac{1}{8}\text{, }&x=\frac{2500}{11a}\text{ and }a\neq 0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{25\left(\sqrt{11ax}-50\right)}{2\left(2500-11ax\right)}\text{; }d=-\frac{25\left(\sqrt{11ax}+50\right)}{2\left(2500-11ax\right)}\text{, }&\left(x\neq \frac{2500}{11a}\text{ and }x\leq 0\text{ and }a\leq 0\right)\text{ or }\left(x\neq \frac{2500}{11a}\text{ and }a\geq 0\text{ and }x\geq 0\right)\text{ or }a=0\\d=-\frac{1}{8}\text{, }&x=\frac{2500}{11a}\text{ and }a\neq 0\end{matrix}\right.
Graph
Quiz
Linear Equation
5 problems similar to:
( 25 + 100 d ) ^ { 2 } = 2 ( x \cdot ( 21 + 1 ) a d ^ { 2 } )
Share
Copied to clipboard
625+5000d+10000d^{2}=2x\left(21+1\right)ad^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25+100d\right)^{2}.
625+5000d+10000d^{2}=2x\times 22ad^{2}
Add 21 and 1 to get 22.
625+5000d+10000d^{2}=44xad^{2}
Multiply 2 and 22 to get 44.
44xad^{2}=625+5000d+10000d^{2}
Swap sides so that all variable terms are on the left hand side.
44xd^{2}a=10000d^{2}+5000d+625
The equation is in standard form.
\frac{44xd^{2}a}{44xd^{2}}=\frac{625\left(4d+1\right)^{2}}{44xd^{2}}
Divide both sides by 44xd^{2}.
a=\frac{625\left(4d+1\right)^{2}}{44xd^{2}}
Dividing by 44xd^{2} undoes the multiplication by 44xd^{2}.
625+5000d+10000d^{2}=2x\left(21+1\right)ad^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25+100d\right)^{2}.
625+5000d+10000d^{2}=2x\times 22ad^{2}
Add 21 and 1 to get 22.
625+5000d+10000d^{2}=44xad^{2}
Multiply 2 and 22 to get 44.
44xad^{2}=625+5000d+10000d^{2}
Swap sides so that all variable terms are on the left hand side.
44xd^{2}a=10000d^{2}+5000d+625
The equation is in standard form.
\frac{44xd^{2}a}{44xd^{2}}=\frac{625\left(4d+1\right)^{2}}{44xd^{2}}
Divide both sides by 44xd^{2}.
a=\frac{625\left(4d+1\right)^{2}}{44xd^{2}}
Dividing by 44xd^{2} undoes the multiplication by 44xd^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}