Solve for d
d=-2
d=0
Share
Copied to clipboard
625+500d+100d^{2}=25\left(25+12d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25+10d\right)^{2}.
625+500d+100d^{2}=625+300d
Use the distributive property to multiply 25 by 25+12d.
625+500d+100d^{2}-625=300d
Subtract 625 from both sides.
500d+100d^{2}=300d
Subtract 625 from 625 to get 0.
500d+100d^{2}-300d=0
Subtract 300d from both sides.
200d+100d^{2}=0
Combine 500d and -300d to get 200d.
d\left(200+100d\right)=0
Factor out d.
d=0 d=-2
To find equation solutions, solve d=0 and 200+100d=0.
625+500d+100d^{2}=25\left(25+12d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25+10d\right)^{2}.
625+500d+100d^{2}=625+300d
Use the distributive property to multiply 25 by 25+12d.
625+500d+100d^{2}-625=300d
Subtract 625 from both sides.
500d+100d^{2}=300d
Subtract 625 from 625 to get 0.
500d+100d^{2}-300d=0
Subtract 300d from both sides.
200d+100d^{2}=0
Combine 500d and -300d to get 200d.
100d^{2}+200d=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-200±\sqrt{200^{2}}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 200 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-200±200}{2\times 100}
Take the square root of 200^{2}.
d=\frac{-200±200}{200}
Multiply 2 times 100.
d=\frac{0}{200}
Now solve the equation d=\frac{-200±200}{200} when ± is plus. Add -200 to 200.
d=0
Divide 0 by 200.
d=-\frac{400}{200}
Now solve the equation d=\frac{-200±200}{200} when ± is minus. Subtract 200 from -200.
d=-2
Divide -400 by 200.
d=0 d=-2
The equation is now solved.
625+500d+100d^{2}=25\left(25+12d\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(25+10d\right)^{2}.
625+500d+100d^{2}=625+300d
Use the distributive property to multiply 25 by 25+12d.
625+500d+100d^{2}-300d=625
Subtract 300d from both sides.
625+200d+100d^{2}=625
Combine 500d and -300d to get 200d.
200d+100d^{2}=625-625
Subtract 625 from both sides.
200d+100d^{2}=0
Subtract 625 from 625 to get 0.
100d^{2}+200d=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{100d^{2}+200d}{100}=\frac{0}{100}
Divide both sides by 100.
d^{2}+\frac{200}{100}d=\frac{0}{100}
Dividing by 100 undoes the multiplication by 100.
d^{2}+2d=\frac{0}{100}
Divide 200 by 100.
d^{2}+2d=0
Divide 0 by 100.
d^{2}+2d+1^{2}=1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+2d+1=1
Square 1.
\left(d+1\right)^{2}=1
Factor d^{2}+2d+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
d+1=1 d+1=-1
Simplify.
d=0 d=-2
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}