( 243 ^ { 1,1 } ) ^ { \frac { 2 } { 11 } }
Evaluate
3
Factor
3
Share
Copied to clipboard
\left(243^{1,1}\right)^{\frac{2}{11}}
Use the rules of exponents to simplify the expression.
243^{1,1\times \frac{2}{11}}
To raise a power to another power, multiply the exponents.
\sqrt[5]{243}
Multiply 1,1 times \frac{2}{11} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
3
Raise 243 to the power \frac{1}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}