Solve for y
y=8
y=16
Graph
Share
Copied to clipboard
24y-y^{2}=128
Use the distributive property to multiply 24-y by y.
24y-y^{2}-128=0
Subtract 128 from both sides.
-y^{2}+24y-128=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-24±\sqrt{24^{2}-4\left(-1\right)\left(-128\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 24 for b, and -128 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\left(-1\right)\left(-128\right)}}{2\left(-1\right)}
Square 24.
y=\frac{-24±\sqrt{576+4\left(-128\right)}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-24±\sqrt{576-512}}{2\left(-1\right)}
Multiply 4 times -128.
y=\frac{-24±\sqrt{64}}{2\left(-1\right)}
Add 576 to -512.
y=\frac{-24±8}{2\left(-1\right)}
Take the square root of 64.
y=\frac{-24±8}{-2}
Multiply 2 times -1.
y=-\frac{16}{-2}
Now solve the equation y=\frac{-24±8}{-2} when ± is plus. Add -24 to 8.
y=8
Divide -16 by -2.
y=-\frac{32}{-2}
Now solve the equation y=\frac{-24±8}{-2} when ± is minus. Subtract 8 from -24.
y=16
Divide -32 by -2.
y=8 y=16
The equation is now solved.
24y-y^{2}=128
Use the distributive property to multiply 24-y by y.
-y^{2}+24y=128
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-y^{2}+24y}{-1}=\frac{128}{-1}
Divide both sides by -1.
y^{2}+\frac{24}{-1}y=\frac{128}{-1}
Dividing by -1 undoes the multiplication by -1.
y^{2}-24y=\frac{128}{-1}
Divide 24 by -1.
y^{2}-24y=-128
Divide 128 by -1.
y^{2}-24y+\left(-12\right)^{2}=-128+\left(-12\right)^{2}
Divide -24, the coefficient of the x term, by 2 to get -12. Then add the square of -12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-24y+144=-128+144
Square -12.
y^{2}-24y+144=16
Add -128 to 144.
\left(y-12\right)^{2}=16
Factor y^{2}-24y+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-12\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
y-12=4 y-12=-4
Simplify.
y=16 y=8
Add 12 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}