Solve for c
c=-\frac{4\left(20-3x\right)}{x-20}
x\neq 20
Solve for x
x=-\frac{20\left(4-c\right)}{c-12}
c\neq 12
Graph
Share
Copied to clipboard
480-24x-40c+2cx=320
Use the distributive property to multiply 24-2c by 20-x.
-24x-40c+2cx=320-480
Subtract 480 from both sides.
-24x-40c+2cx=-160
Subtract 480 from 320 to get -160.
-40c+2cx=-160+24x
Add 24x to both sides.
\left(-40+2x\right)c=-160+24x
Combine all terms containing c.
\left(2x-40\right)c=24x-160
The equation is in standard form.
\frac{\left(2x-40\right)c}{2x-40}=\frac{24x-160}{2x-40}
Divide both sides by -40+2x.
c=\frac{24x-160}{2x-40}
Dividing by -40+2x undoes the multiplication by -40+2x.
c=\frac{4\left(3x-20\right)}{x-20}
Divide -160+24x by -40+2x.
480-24x-40c+2xc=320
Use the distributive property to multiply 24-2c by 20-x.
-24x-40c+2xc=320-480
Subtract 480 from both sides.
-24x-40c+2xc=-160
Subtract 480 from 320 to get -160.
-24x+2xc=-160+40c
Add 40c to both sides.
\left(-24+2c\right)x=-160+40c
Combine all terms containing x.
\left(2c-24\right)x=40c-160
The equation is in standard form.
\frac{\left(2c-24\right)x}{2c-24}=\frac{40c-160}{2c-24}
Divide both sides by -24+2c.
x=\frac{40c-160}{2c-24}
Dividing by -24+2c undoes the multiplication by -24+2c.
x=\frac{20\left(c-4\right)}{c-12}
Divide -160+40c by -24+2c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}