Evaluate
\frac{346813}{3772}\approx 91.944061506
Factor
\frac{157 \cdot 47 ^ {2}}{23 \cdot 41 \cdot 2 ^ {2}} = 91\frac{3561}{3772} = 91.94406150583245
Share
Copied to clipboard
\frac{773}{23}+\frac{34.5+4749}{82}
Subtract 1572 from 2345 to get 773.
\frac{773}{23}+\frac{4783.5}{82}
Add 34.5 and 4749 to get 4783.5.
\frac{773}{23}+\frac{47835}{820}
Expand \frac{4783.5}{82} by multiplying both numerator and the denominator by 10.
\frac{773}{23}+\frac{9567}{164}
Reduce the fraction \frac{47835}{820} to lowest terms by extracting and canceling out 5.
\frac{126772}{3772}+\frac{220041}{3772}
Least common multiple of 23 and 164 is 3772. Convert \frac{773}{23} and \frac{9567}{164} to fractions with denominator 3772.
\frac{126772+220041}{3772}
Since \frac{126772}{3772} and \frac{220041}{3772} have the same denominator, add them by adding their numerators.
\frac{346813}{3772}
Add 126772 and 220041 to get 346813.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}