Solve for x
x=6
x=10
Graph
Quiz
Quadratic Equation
5 problems similar to:
( 2000 - 200 x ) ^ { 2 } + ( 100 x ) ^ { 2 } = 1000 ^ { 2 }
Share
Copied to clipboard
4000000-800000x+40000x^{2}+\left(100x\right)^{2}=1000^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2000-200x\right)^{2}.
4000000-800000x+40000x^{2}+100^{2}x^{2}=1000^{2}
Expand \left(100x\right)^{2}.
4000000-800000x+40000x^{2}+10000x^{2}=1000^{2}
Calculate 100 to the power of 2 and get 10000.
4000000-800000x+50000x^{2}=1000^{2}
Combine 40000x^{2} and 10000x^{2} to get 50000x^{2}.
4000000-800000x+50000x^{2}=1000000
Calculate 1000 to the power of 2 and get 1000000.
4000000-800000x+50000x^{2}-1000000=0
Subtract 1000000 from both sides.
3000000-800000x+50000x^{2}=0
Subtract 1000000 from 4000000 to get 3000000.
50000x^{2}-800000x+3000000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-800000\right)±\sqrt{\left(-800000\right)^{2}-4\times 50000\times 3000000}}{2\times 50000}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 50000 for a, -800000 for b, and 3000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-800000\right)±\sqrt{640000000000-4\times 50000\times 3000000}}{2\times 50000}
Square -800000.
x=\frac{-\left(-800000\right)±\sqrt{640000000000-200000\times 3000000}}{2\times 50000}
Multiply -4 times 50000.
x=\frac{-\left(-800000\right)±\sqrt{640000000000-600000000000}}{2\times 50000}
Multiply -200000 times 3000000.
x=\frac{-\left(-800000\right)±\sqrt{40000000000}}{2\times 50000}
Add 640000000000 to -600000000000.
x=\frac{-\left(-800000\right)±200000}{2\times 50000}
Take the square root of 40000000000.
x=\frac{800000±200000}{2\times 50000}
The opposite of -800000 is 800000.
x=\frac{800000±200000}{100000}
Multiply 2 times 50000.
x=\frac{1000000}{100000}
Now solve the equation x=\frac{800000±200000}{100000} when ± is plus. Add 800000 to 200000.
x=10
Divide 1000000 by 100000.
x=\frac{600000}{100000}
Now solve the equation x=\frac{800000±200000}{100000} when ± is minus. Subtract 200000 from 800000.
x=6
Divide 600000 by 100000.
x=10 x=6
The equation is now solved.
4000000-800000x+40000x^{2}+\left(100x\right)^{2}=1000^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2000-200x\right)^{2}.
4000000-800000x+40000x^{2}+100^{2}x^{2}=1000^{2}
Expand \left(100x\right)^{2}.
4000000-800000x+40000x^{2}+10000x^{2}=1000^{2}
Calculate 100 to the power of 2 and get 10000.
4000000-800000x+50000x^{2}=1000^{2}
Combine 40000x^{2} and 10000x^{2} to get 50000x^{2}.
4000000-800000x+50000x^{2}=1000000
Calculate 1000 to the power of 2 and get 1000000.
-800000x+50000x^{2}=1000000-4000000
Subtract 4000000 from both sides.
-800000x+50000x^{2}=-3000000
Subtract 4000000 from 1000000 to get -3000000.
50000x^{2}-800000x=-3000000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{50000x^{2}-800000x}{50000}=-\frac{3000000}{50000}
Divide both sides by 50000.
x^{2}+\left(-\frac{800000}{50000}\right)x=-\frac{3000000}{50000}
Dividing by 50000 undoes the multiplication by 50000.
x^{2}-16x=-\frac{3000000}{50000}
Divide -800000 by 50000.
x^{2}-16x=-60
Divide -3000000 by 50000.
x^{2}-16x+\left(-8\right)^{2}=-60+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-60+64
Square -8.
x^{2}-16x+64=4
Add -60 to 64.
\left(x-8\right)^{2}=4
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
x-8=2 x-8=-2
Simplify.
x=10 x=6
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}