Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

20x-x^{2}=75+\frac{5}{2}x
Use the distributive property to multiply 20-x by x.
20x-x^{2}-75=\frac{5}{2}x
Subtract 75 from both sides.
20x-x^{2}-75-\frac{5}{2}x=0
Subtract \frac{5}{2}x from both sides.
\frac{35}{2}x-x^{2}-75=0
Combine 20x and -\frac{5}{2}x to get \frac{35}{2}x.
-x^{2}+\frac{35}{2}x-75=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{35}{2}±\sqrt{\left(\frac{35}{2}\right)^{2}-4\left(-1\right)\left(-75\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{35}{2} for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{35}{2}±\sqrt{\frac{1225}{4}-4\left(-1\right)\left(-75\right)}}{2\left(-1\right)}
Square \frac{35}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{35}{2}±\sqrt{\frac{1225}{4}+4\left(-75\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{35}{2}±\sqrt{\frac{1225}{4}-300}}{2\left(-1\right)}
Multiply 4 times -75.
x=\frac{-\frac{35}{2}±\sqrt{\frac{25}{4}}}{2\left(-1\right)}
Add \frac{1225}{4} to -300.
x=\frac{-\frac{35}{2}±\frac{5}{2}}{2\left(-1\right)}
Take the square root of \frac{25}{4}.
x=\frac{-\frac{35}{2}±\frac{5}{2}}{-2}
Multiply 2 times -1.
x=-\frac{15}{-2}
Now solve the equation x=\frac{-\frac{35}{2}±\frac{5}{2}}{-2} when ± is plus. Add -\frac{35}{2} to \frac{5}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{15}{2}
Divide -15 by -2.
x=-\frac{20}{-2}
Now solve the equation x=\frac{-\frac{35}{2}±\frac{5}{2}}{-2} when ± is minus. Subtract \frac{5}{2} from -\frac{35}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=10
Divide -20 by -2.
x=\frac{15}{2} x=10
The equation is now solved.
20x-x^{2}=75+\frac{5}{2}x
Use the distributive property to multiply 20-x by x.
20x-x^{2}-\frac{5}{2}x=75
Subtract \frac{5}{2}x from both sides.
\frac{35}{2}x-x^{2}=75
Combine 20x and -\frac{5}{2}x to get \frac{35}{2}x.
-x^{2}+\frac{35}{2}x=75
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+\frac{35}{2}x}{-1}=\frac{75}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{35}{2}}{-1}x=\frac{75}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{35}{2}x=\frac{75}{-1}
Divide \frac{35}{2} by -1.
x^{2}-\frac{35}{2}x=-75
Divide 75 by -1.
x^{2}-\frac{35}{2}x+\left(-\frac{35}{4}\right)^{2}=-75+\left(-\frac{35}{4}\right)^{2}
Divide -\frac{35}{2}, the coefficient of the x term, by 2 to get -\frac{35}{4}. Then add the square of -\frac{35}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{2}x+\frac{1225}{16}=-75+\frac{1225}{16}
Square -\frac{35}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{2}x+\frac{1225}{16}=\frac{25}{16}
Add -75 to \frac{1225}{16}.
\left(x-\frac{35}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}-\frac{35}{2}x+\frac{1225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Take the square root of both sides of the equation.
x-\frac{35}{4}=\frac{5}{4} x-\frac{35}{4}=-\frac{5}{4}
Simplify.
x=10 x=\frac{15}{2}
Add \frac{35}{4} to both sides of the equation.