Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

240-56x+3x^{2}=112
Use the distributive property to multiply 20-3x by 12-x and combine like terms.
240-56x+3x^{2}-112=0
Subtract 112 from both sides.
128-56x+3x^{2}=0
Subtract 112 from 240 to get 128.
3x^{2}-56x+128=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}-4\times 3\times 128}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -56 for b, and 128 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-56\right)±\sqrt{3136-4\times 3\times 128}}{2\times 3}
Square -56.
x=\frac{-\left(-56\right)±\sqrt{3136-12\times 128}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-56\right)±\sqrt{3136-1536}}{2\times 3}
Multiply -12 times 128.
x=\frac{-\left(-56\right)±\sqrt{1600}}{2\times 3}
Add 3136 to -1536.
x=\frac{-\left(-56\right)±40}{2\times 3}
Take the square root of 1600.
x=\frac{56±40}{2\times 3}
The opposite of -56 is 56.
x=\frac{56±40}{6}
Multiply 2 times 3.
x=\frac{96}{6}
Now solve the equation x=\frac{56±40}{6} when ± is plus. Add 56 to 40.
x=16
Divide 96 by 6.
x=\frac{16}{6}
Now solve the equation x=\frac{56±40}{6} when ± is minus. Subtract 40 from 56.
x=\frac{8}{3}
Reduce the fraction \frac{16}{6} to lowest terms by extracting and canceling out 2.
x=16 x=\frac{8}{3}
The equation is now solved.
240-56x+3x^{2}=112
Use the distributive property to multiply 20-3x by 12-x and combine like terms.
-56x+3x^{2}=112-240
Subtract 240 from both sides.
-56x+3x^{2}=-128
Subtract 240 from 112 to get -128.
3x^{2}-56x=-128
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-56x}{3}=-\frac{128}{3}
Divide both sides by 3.
x^{2}-\frac{56}{3}x=-\frac{128}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{56}{3}x+\left(-\frac{28}{3}\right)^{2}=-\frac{128}{3}+\left(-\frac{28}{3}\right)^{2}
Divide -\frac{56}{3}, the coefficient of the x term, by 2 to get -\frac{28}{3}. Then add the square of -\frac{28}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{56}{3}x+\frac{784}{9}=-\frac{128}{3}+\frac{784}{9}
Square -\frac{28}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{56}{3}x+\frac{784}{9}=\frac{400}{9}
Add -\frac{128}{3} to \frac{784}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{28}{3}\right)^{2}=\frac{400}{9}
Factor x^{2}-\frac{56}{3}x+\frac{784}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{28}{3}\right)^{2}}=\sqrt{\frac{400}{9}}
Take the square root of both sides of the equation.
x-\frac{28}{3}=\frac{20}{3} x-\frac{28}{3}=-\frac{20}{3}
Simplify.
x=16 x=\frac{8}{3}
Add \frac{28}{3} to both sides of the equation.