Solve for y
y = \frac{11}{2} = 5\frac{1}{2} = 5.5
y = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Share
Copied to clipboard
4y^{2}-12y+9-64=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-3\right)^{2}.
4y^{2}-12y-55=0
Subtract 64 from 9 to get -55.
a+b=-12 ab=4\left(-55\right)=-220
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 4y^{2}+ay+by-55. To find a and b, set up a system to be solved.
1,-220 2,-110 4,-55 5,-44 10,-22 11,-20
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -220.
1-220=-219 2-110=-108 4-55=-51 5-44=-39 10-22=-12 11-20=-9
Calculate the sum for each pair.
a=-22 b=10
The solution is the pair that gives sum -12.
\left(4y^{2}-22y\right)+\left(10y-55\right)
Rewrite 4y^{2}-12y-55 as \left(4y^{2}-22y\right)+\left(10y-55\right).
2y\left(2y-11\right)+5\left(2y-11\right)
Factor out 2y in the first and 5 in the second group.
\left(2y-11\right)\left(2y+5\right)
Factor out common term 2y-11 by using distributive property.
y=\frac{11}{2} y=-\frac{5}{2}
To find equation solutions, solve 2y-11=0 and 2y+5=0.
4y^{2}-12y+9-64=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-3\right)^{2}.
4y^{2}-12y-55=0
Subtract 64 from 9 to get -55.
y=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-55\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and -55 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-55\right)}}{2\times 4}
Square -12.
y=\frac{-\left(-12\right)±\sqrt{144-16\left(-55\right)}}{2\times 4}
Multiply -4 times 4.
y=\frac{-\left(-12\right)±\sqrt{144+880}}{2\times 4}
Multiply -16 times -55.
y=\frac{-\left(-12\right)±\sqrt{1024}}{2\times 4}
Add 144 to 880.
y=\frac{-\left(-12\right)±32}{2\times 4}
Take the square root of 1024.
y=\frac{12±32}{2\times 4}
The opposite of -12 is 12.
y=\frac{12±32}{8}
Multiply 2 times 4.
y=\frac{44}{8}
Now solve the equation y=\frac{12±32}{8} when ± is plus. Add 12 to 32.
y=\frac{11}{2}
Reduce the fraction \frac{44}{8} to lowest terms by extracting and canceling out 4.
y=-\frac{20}{8}
Now solve the equation y=\frac{12±32}{8} when ± is minus. Subtract 32 from 12.
y=-\frac{5}{2}
Reduce the fraction \frac{-20}{8} to lowest terms by extracting and canceling out 4.
y=\frac{11}{2} y=-\frac{5}{2}
The equation is now solved.
4y^{2}-12y+9-64=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-3\right)^{2}.
4y^{2}-12y-55=0
Subtract 64 from 9 to get -55.
4y^{2}-12y=55
Add 55 to both sides. Anything plus zero gives itself.
\frac{4y^{2}-12y}{4}=\frac{55}{4}
Divide both sides by 4.
y^{2}+\left(-\frac{12}{4}\right)y=\frac{55}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}-3y=\frac{55}{4}
Divide -12 by 4.
y^{2}-3y+\left(-\frac{3}{2}\right)^{2}=\frac{55}{4}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-3y+\frac{9}{4}=\frac{55+9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}-3y+\frac{9}{4}=16
Add \frac{55}{4} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{3}{2}\right)^{2}=16
Factor y^{2}-3y+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{3}{2}\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
y-\frac{3}{2}=4 y-\frac{3}{2}=-4
Simplify.
y=\frac{11}{2} y=-\frac{5}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}