Solve for y
y=\frac{1}{3}\approx 0.333333333
y=5
Graph
Share
Copied to clipboard
4y^{2}-12y+9=y^{2}+4y+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-3\right)^{2}.
4y^{2}-12y+9-y^{2}=4y+4
Subtract y^{2} from both sides.
3y^{2}-12y+9=4y+4
Combine 4y^{2} and -y^{2} to get 3y^{2}.
3y^{2}-12y+9-4y=4
Subtract 4y from both sides.
3y^{2}-16y+9=4
Combine -12y and -4y to get -16y.
3y^{2}-16y+9-4=0
Subtract 4 from both sides.
3y^{2}-16y+5=0
Subtract 4 from 9 to get 5.
a+b=-16 ab=3\times 5=15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3y^{2}+ay+by+5. To find a and b, set up a system to be solved.
-1,-15 -3,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 15.
-1-15=-16 -3-5=-8
Calculate the sum for each pair.
a=-15 b=-1
The solution is the pair that gives sum -16.
\left(3y^{2}-15y\right)+\left(-y+5\right)
Rewrite 3y^{2}-16y+5 as \left(3y^{2}-15y\right)+\left(-y+5\right).
3y\left(y-5\right)-\left(y-5\right)
Factor out 3y in the first and -1 in the second group.
\left(y-5\right)\left(3y-1\right)
Factor out common term y-5 by using distributive property.
y=5 y=\frac{1}{3}
To find equation solutions, solve y-5=0 and 3y-1=0.
4y^{2}-12y+9=y^{2}+4y+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-3\right)^{2}.
4y^{2}-12y+9-y^{2}=4y+4
Subtract y^{2} from both sides.
3y^{2}-12y+9=4y+4
Combine 4y^{2} and -y^{2} to get 3y^{2}.
3y^{2}-12y+9-4y=4
Subtract 4y from both sides.
3y^{2}-16y+9=4
Combine -12y and -4y to get -16y.
3y^{2}-16y+9-4=0
Subtract 4 from both sides.
3y^{2}-16y+5=0
Subtract 4 from 9 to get 5.
y=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 3\times 5}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -16 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-16\right)±\sqrt{256-4\times 3\times 5}}{2\times 3}
Square -16.
y=\frac{-\left(-16\right)±\sqrt{256-12\times 5}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-16\right)±\sqrt{256-60}}{2\times 3}
Multiply -12 times 5.
y=\frac{-\left(-16\right)±\sqrt{196}}{2\times 3}
Add 256 to -60.
y=\frac{-\left(-16\right)±14}{2\times 3}
Take the square root of 196.
y=\frac{16±14}{2\times 3}
The opposite of -16 is 16.
y=\frac{16±14}{6}
Multiply 2 times 3.
y=\frac{30}{6}
Now solve the equation y=\frac{16±14}{6} when ± is plus. Add 16 to 14.
y=5
Divide 30 by 6.
y=\frac{2}{6}
Now solve the equation y=\frac{16±14}{6} when ± is minus. Subtract 14 from 16.
y=\frac{1}{3}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
y=5 y=\frac{1}{3}
The equation is now solved.
4y^{2}-12y+9=y^{2}+4y+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2y-3\right)^{2}.
4y^{2}-12y+9-y^{2}=4y+4
Subtract y^{2} from both sides.
3y^{2}-12y+9=4y+4
Combine 4y^{2} and -y^{2} to get 3y^{2}.
3y^{2}-12y+9-4y=4
Subtract 4y from both sides.
3y^{2}-16y+9=4
Combine -12y and -4y to get -16y.
3y^{2}-16y=4-9
Subtract 9 from both sides.
3y^{2}-16y=-5
Subtract 9 from 4 to get -5.
\frac{3y^{2}-16y}{3}=-\frac{5}{3}
Divide both sides by 3.
y^{2}-\frac{16}{3}y=-\frac{5}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-\frac{16}{3}y+\left(-\frac{8}{3}\right)^{2}=-\frac{5}{3}+\left(-\frac{8}{3}\right)^{2}
Divide -\frac{16}{3}, the coefficient of the x term, by 2 to get -\frac{8}{3}. Then add the square of -\frac{8}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{16}{3}y+\frac{64}{9}=-\frac{5}{3}+\frac{64}{9}
Square -\frac{8}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{16}{3}y+\frac{64}{9}=\frac{49}{9}
Add -\frac{5}{3} to \frac{64}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{8}{3}\right)^{2}=\frac{49}{9}
Factor y^{2}-\frac{16}{3}y+\frac{64}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{8}{3}\right)^{2}}=\sqrt{\frac{49}{9}}
Take the square root of both sides of the equation.
y-\frac{8}{3}=\frac{7}{3} y-\frac{8}{3}=-\frac{7}{3}
Simplify.
y=5 y=\frac{1}{3}
Add \frac{8}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}