Solve for y
y = -\frac{5}{2} = -2\frac{1}{2} = -2.5
y=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
6y^{2}+11y-7=3
Use the distributive property to multiply 2y-1 by 3y+7 and combine like terms.
6y^{2}+11y-7-3=0
Subtract 3 from both sides.
6y^{2}+11y-10=0
Subtract 3 from -7 to get -10.
y=\frac{-11±\sqrt{11^{2}-4\times 6\left(-10\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 11 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-11±\sqrt{121-4\times 6\left(-10\right)}}{2\times 6}
Square 11.
y=\frac{-11±\sqrt{121-24\left(-10\right)}}{2\times 6}
Multiply -4 times 6.
y=\frac{-11±\sqrt{121+240}}{2\times 6}
Multiply -24 times -10.
y=\frac{-11±\sqrt{361}}{2\times 6}
Add 121 to 240.
y=\frac{-11±19}{2\times 6}
Take the square root of 361.
y=\frac{-11±19}{12}
Multiply 2 times 6.
y=\frac{8}{12}
Now solve the equation y=\frac{-11±19}{12} when ± is plus. Add -11 to 19.
y=\frac{2}{3}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
y=-\frac{30}{12}
Now solve the equation y=\frac{-11±19}{12} when ± is minus. Subtract 19 from -11.
y=-\frac{5}{2}
Reduce the fraction \frac{-30}{12} to lowest terms by extracting and canceling out 6.
y=\frac{2}{3} y=-\frac{5}{2}
The equation is now solved.
6y^{2}+11y-7=3
Use the distributive property to multiply 2y-1 by 3y+7 and combine like terms.
6y^{2}+11y=3+7
Add 7 to both sides.
6y^{2}+11y=10
Add 3 and 7 to get 10.
\frac{6y^{2}+11y}{6}=\frac{10}{6}
Divide both sides by 6.
y^{2}+\frac{11}{6}y=\frac{10}{6}
Dividing by 6 undoes the multiplication by 6.
y^{2}+\frac{11}{6}y=\frac{5}{3}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
y^{2}+\frac{11}{6}y+\left(\frac{11}{12}\right)^{2}=\frac{5}{3}+\left(\frac{11}{12}\right)^{2}
Divide \frac{11}{6}, the coefficient of the x term, by 2 to get \frac{11}{12}. Then add the square of \frac{11}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{11}{6}y+\frac{121}{144}=\frac{5}{3}+\frac{121}{144}
Square \frac{11}{12} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{11}{6}y+\frac{121}{144}=\frac{361}{144}
Add \frac{5}{3} to \frac{121}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y+\frac{11}{12}\right)^{2}=\frac{361}{144}
Factor y^{2}+\frac{11}{6}y+\frac{121}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{11}{12}\right)^{2}}=\sqrt{\frac{361}{144}}
Take the square root of both sides of the equation.
y+\frac{11}{12}=\frac{19}{12} y+\frac{11}{12}=-\frac{19}{12}
Simplify.
y=\frac{2}{3} y=-\frac{5}{2}
Subtract \frac{11}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}