Solve for y
y=2
y=-5
Graph
Share
Copied to clipboard
4y^{2}+12y+9=49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2y+3\right)^{2}.
4y^{2}+12y+9-49=0
Subtract 49 from both sides.
4y^{2}+12y-40=0
Subtract 49 from 9 to get -40.
y^{2}+3y-10=0
Divide both sides by 4.
a+b=3 ab=1\left(-10\right)=-10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as y^{2}+ay+by-10. To find a and b, set up a system to be solved.
-1,10 -2,5
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -10.
-1+10=9 -2+5=3
Calculate the sum for each pair.
a=-2 b=5
The solution is the pair that gives sum 3.
\left(y^{2}-2y\right)+\left(5y-10\right)
Rewrite y^{2}+3y-10 as \left(y^{2}-2y\right)+\left(5y-10\right).
y\left(y-2\right)+5\left(y-2\right)
Factor out y in the first and 5 in the second group.
\left(y-2\right)\left(y+5\right)
Factor out common term y-2 by using distributive property.
y=2 y=-5
To find equation solutions, solve y-2=0 and y+5=0.
4y^{2}+12y+9=49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2y+3\right)^{2}.
4y^{2}+12y+9-49=0
Subtract 49 from both sides.
4y^{2}+12y-40=0
Subtract 49 from 9 to get -40.
y=\frac{-12±\sqrt{12^{2}-4\times 4\left(-40\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 12 for b, and -40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 4\left(-40\right)}}{2\times 4}
Square 12.
y=\frac{-12±\sqrt{144-16\left(-40\right)}}{2\times 4}
Multiply -4 times 4.
y=\frac{-12±\sqrt{144+640}}{2\times 4}
Multiply -16 times -40.
y=\frac{-12±\sqrt{784}}{2\times 4}
Add 144 to 640.
y=\frac{-12±28}{2\times 4}
Take the square root of 784.
y=\frac{-12±28}{8}
Multiply 2 times 4.
y=\frac{16}{8}
Now solve the equation y=\frac{-12±28}{8} when ± is plus. Add -12 to 28.
y=2
Divide 16 by 8.
y=-\frac{40}{8}
Now solve the equation y=\frac{-12±28}{8} when ± is minus. Subtract 28 from -12.
y=-5
Divide -40 by 8.
y=2 y=-5
The equation is now solved.
4y^{2}+12y+9=49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2y+3\right)^{2}.
4y^{2}+12y=49-9
Subtract 9 from both sides.
4y^{2}+12y=40
Subtract 9 from 49 to get 40.
\frac{4y^{2}+12y}{4}=\frac{40}{4}
Divide both sides by 4.
y^{2}+\frac{12}{4}y=\frac{40}{4}
Dividing by 4 undoes the multiplication by 4.
y^{2}+3y=\frac{40}{4}
Divide 12 by 4.
y^{2}+3y=10
Divide 40 by 4.
y^{2}+3y+\left(\frac{3}{2}\right)^{2}=10+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+3y+\frac{9}{4}=10+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+3y+\frac{9}{4}=\frac{49}{4}
Add 10 to \frac{9}{4}.
\left(y+\frac{3}{2}\right)^{2}=\frac{49}{4}
Factor y^{2}+3y+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
y+\frac{3}{2}=\frac{7}{2} y+\frac{3}{2}=-\frac{7}{2}
Simplify.
y=2 y=-5
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}