Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4y^{2}+12y+9+y^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2y+3\right)^{2}.
5y^{2}+12y+9=4
Combine 4y^{2} and y^{2} to get 5y^{2}.
5y^{2}+12y+9-4=0
Subtract 4 from both sides.
5y^{2}+12y+5=0
Subtract 4 from 9 to get 5.
y=\frac{-12±\sqrt{12^{2}-4\times 5\times 5}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 12 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 5\times 5}}{2\times 5}
Square 12.
y=\frac{-12±\sqrt{144-20\times 5}}{2\times 5}
Multiply -4 times 5.
y=\frac{-12±\sqrt{144-100}}{2\times 5}
Multiply -20 times 5.
y=\frac{-12±\sqrt{44}}{2\times 5}
Add 144 to -100.
y=\frac{-12±2\sqrt{11}}{2\times 5}
Take the square root of 44.
y=\frac{-12±2\sqrt{11}}{10}
Multiply 2 times 5.
y=\frac{2\sqrt{11}-12}{10}
Now solve the equation y=\frac{-12±2\sqrt{11}}{10} when ± is plus. Add -12 to 2\sqrt{11}.
y=\frac{\sqrt{11}-6}{5}
Divide -12+2\sqrt{11} by 10.
y=\frac{-2\sqrt{11}-12}{10}
Now solve the equation y=\frac{-12±2\sqrt{11}}{10} when ± is minus. Subtract 2\sqrt{11} from -12.
y=\frac{-\sqrt{11}-6}{5}
Divide -12-2\sqrt{11} by 10.
y=\frac{\sqrt{11}-6}{5} y=\frac{-\sqrt{11}-6}{5}
The equation is now solved.
4y^{2}+12y+9+y^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2y+3\right)^{2}.
5y^{2}+12y+9=4
Combine 4y^{2} and y^{2} to get 5y^{2}.
5y^{2}+12y=4-9
Subtract 9 from both sides.
5y^{2}+12y=-5
Subtract 9 from 4 to get -5.
\frac{5y^{2}+12y}{5}=-\frac{5}{5}
Divide both sides by 5.
y^{2}+\frac{12}{5}y=-\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
y^{2}+\frac{12}{5}y=-1
Divide -5 by 5.
y^{2}+\frac{12}{5}y+\left(\frac{6}{5}\right)^{2}=-1+\left(\frac{6}{5}\right)^{2}
Divide \frac{12}{5}, the coefficient of the x term, by 2 to get \frac{6}{5}. Then add the square of \frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{12}{5}y+\frac{36}{25}=-1+\frac{36}{25}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{12}{5}y+\frac{36}{25}=\frac{11}{25}
Add -1 to \frac{36}{25}.
\left(y+\frac{6}{5}\right)^{2}=\frac{11}{25}
Factor y^{2}+\frac{12}{5}y+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{6}{5}\right)^{2}}=\sqrt{\frac{11}{25}}
Take the square root of both sides of the equation.
y+\frac{6}{5}=\frac{\sqrt{11}}{5} y+\frac{6}{5}=-\frac{\sqrt{11}}{5}
Simplify.
y=\frac{\sqrt{11}-6}{5} y=\frac{-\sqrt{11}-6}{5}
Subtract \frac{6}{5} from both sides of the equation.