Solve for y
y=\frac{\sqrt{11}-6}{5}\approx -0.536675042
y=\frac{-\sqrt{11}-6}{5}\approx -1.863324958
Graph
Share
Copied to clipboard
4y^{2}+12y+9+y^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2y+3\right)^{2}.
5y^{2}+12y+9=4
Combine 4y^{2} and y^{2} to get 5y^{2}.
5y^{2}+12y+9-4=0
Subtract 4 from both sides.
5y^{2}+12y+5=0
Subtract 4 from 9 to get 5.
y=\frac{-12±\sqrt{12^{2}-4\times 5\times 5}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 12 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-12±\sqrt{144-4\times 5\times 5}}{2\times 5}
Square 12.
y=\frac{-12±\sqrt{144-20\times 5}}{2\times 5}
Multiply -4 times 5.
y=\frac{-12±\sqrt{144-100}}{2\times 5}
Multiply -20 times 5.
y=\frac{-12±\sqrt{44}}{2\times 5}
Add 144 to -100.
y=\frac{-12±2\sqrt{11}}{2\times 5}
Take the square root of 44.
y=\frac{-12±2\sqrt{11}}{10}
Multiply 2 times 5.
y=\frac{2\sqrt{11}-12}{10}
Now solve the equation y=\frac{-12±2\sqrt{11}}{10} when ± is plus. Add -12 to 2\sqrt{11}.
y=\frac{\sqrt{11}-6}{5}
Divide -12+2\sqrt{11} by 10.
y=\frac{-2\sqrt{11}-12}{10}
Now solve the equation y=\frac{-12±2\sqrt{11}}{10} when ± is minus. Subtract 2\sqrt{11} from -12.
y=\frac{-\sqrt{11}-6}{5}
Divide -12-2\sqrt{11} by 10.
y=\frac{\sqrt{11}-6}{5} y=\frac{-\sqrt{11}-6}{5}
The equation is now solved.
4y^{2}+12y+9+y^{2}=4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2y+3\right)^{2}.
5y^{2}+12y+9=4
Combine 4y^{2} and y^{2} to get 5y^{2}.
5y^{2}+12y=4-9
Subtract 9 from both sides.
5y^{2}+12y=-5
Subtract 9 from 4 to get -5.
\frac{5y^{2}+12y}{5}=-\frac{5}{5}
Divide both sides by 5.
y^{2}+\frac{12}{5}y=-\frac{5}{5}
Dividing by 5 undoes the multiplication by 5.
y^{2}+\frac{12}{5}y=-1
Divide -5 by 5.
y^{2}+\frac{12}{5}y+\left(\frac{6}{5}\right)^{2}=-1+\left(\frac{6}{5}\right)^{2}
Divide \frac{12}{5}, the coefficient of the x term, by 2 to get \frac{6}{5}. Then add the square of \frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+\frac{12}{5}y+\frac{36}{25}=-1+\frac{36}{25}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
y^{2}+\frac{12}{5}y+\frac{36}{25}=\frac{11}{25}
Add -1 to \frac{36}{25}.
\left(y+\frac{6}{5}\right)^{2}=\frac{11}{25}
Factor y^{2}+\frac{12}{5}y+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{6}{5}\right)^{2}}=\sqrt{\frac{11}{25}}
Take the square root of both sides of the equation.
y+\frac{6}{5}=\frac{\sqrt{11}}{5} y+\frac{6}{5}=-\frac{\sqrt{11}}{5}
Simplify.
y=\frac{\sqrt{11}-6}{5} y=\frac{-\sqrt{11}-6}{5}
Subtract \frac{6}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}