Solve for y (complex solution)
y=\frac{1}{x\left(\cos(2x)+1\right)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }x\neq 0
Solve for y
y=\frac{1}{2x\left(\cos(x)\right)^{2}}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }x\neq 0
Share
Copied to clipboard
2xy=0+\left(\sec(x)\right)^{2}
Add \left(\sec(x)\right)^{2} to both sides.
2xy=\left(\sec(x)\right)^{2}
Anything plus zero gives itself.
\frac{2xy}{2x}=\frac{1}{\left(\cos(x)\right)^{2}\times 2x}
Divide both sides by 2x.
y=\frac{1}{\left(\cos(x)\right)^{2}\times 2x}
Dividing by 2x undoes the multiplication by 2x.
y=\frac{1}{2x\left(\cos(x)\right)^{2}}
Divide \frac{1}{\left(\cos(x)\right)^{2}} by 2x.
2xy=0+\left(\sec(x)\right)^{2}
Add \left(\sec(x)\right)^{2} to both sides.
2xy=\left(\sec(x)\right)^{2}
Anything plus zero gives itself.
\frac{2xy}{2x}=\frac{1}{\left(\cos(x)\right)^{2}\times 2x}
Divide both sides by 2x.
y=\frac{1}{\left(\cos(x)\right)^{2}\times 2x}
Dividing by 2x undoes the multiplication by 2x.
y=\frac{1}{2x\left(\cos(x)\right)^{2}}
Divide \frac{1}{\left(\cos(x)\right)^{2}} by 2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}