Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

2xy=0+\left(\sec(x)\right)^{2}
Add \left(\sec(x)\right)^{2} to both sides.
2xy=\left(\sec(x)\right)^{2}
Anything plus zero gives itself.
\frac{2xy}{2x}=\frac{1}{\left(\cos(x)\right)^{2}\times 2x}
Divide both sides by 2x.
y=\frac{1}{\left(\cos(x)\right)^{2}\times 2x}
Dividing by 2x undoes the multiplication by 2x.
y=\frac{1}{2x\left(\cos(x)\right)^{2}}
Divide \frac{1}{\left(\cos(x)\right)^{2}} by 2x.
2xy=0+\left(\sec(x)\right)^{2}
Add \left(\sec(x)\right)^{2} to both sides.
2xy=\left(\sec(x)\right)^{2}
Anything plus zero gives itself.
\frac{2xy}{2x}=\frac{1}{\left(\cos(x)\right)^{2}\times 2x}
Divide both sides by 2x.
y=\frac{1}{\left(\cos(x)\right)^{2}\times 2x}
Dividing by 2x undoes the multiplication by 2x.
y=\frac{1}{2x\left(\cos(x)\right)^{2}}
Divide \frac{1}{\left(\cos(x)\right)^{2}} by 2x.