Evaluate
3y\left(13x-6y\right)
Expand
39xy-18y^{2}
Share
Copied to clipboard
\left(2x\right)^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Consider \left(2x-y\right)\left(y+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(22x^{2}-33xy-6yx+9y^{2}\right)
Apply the distributive property by multiplying each term of 11x-3y by each term of 2x-3y.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(22x^{2}-39xy+9y^{2}\right)
Combine -33xy and -6yx to get -39xy.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-22x^{2}-\left(-39xy\right)-9y^{2}
To find the opposite of 22x^{2}-39xy+9y^{2}, find the opposite of each term.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-22x^{2}+39xy-9y^{2}
The opposite of -39xy is 39xy.
4x^{2}-y^{2}+\left(-6x+4y\right)\left(-2y-3x\right)-22x^{2}+39xy-9y^{2}
Use the distributive property to multiply -2 by 3x-2y.
4x^{2}-y^{2}+12xy+18x^{2}-8y^{2}-12yx-22x^{2}+39xy-9y^{2}
Apply the distributive property by multiplying each term of -6x+4y by each term of -2y-3x.
4x^{2}-y^{2}+18x^{2}-8y^{2}-22x^{2}+39xy-9y^{2}
Combine 12xy and -12yx to get 0.
22x^{2}-y^{2}-8y^{2}-22x^{2}+39xy-9y^{2}
Combine 4x^{2} and 18x^{2} to get 22x^{2}.
22x^{2}-9y^{2}-22x^{2}+39xy-9y^{2}
Combine -y^{2} and -8y^{2} to get -9y^{2}.
-9y^{2}+39xy-9y^{2}
Combine 22x^{2} and -22x^{2} to get 0.
-18y^{2}+39xy
Combine -9y^{2} and -9y^{2} to get -18y^{2}.
\left(2x\right)^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Consider \left(2x-y\right)\left(y+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(22x^{2}-33xy-6yx+9y^{2}\right)
Apply the distributive property by multiplying each term of 11x-3y by each term of 2x-3y.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(22x^{2}-39xy+9y^{2}\right)
Combine -33xy and -6yx to get -39xy.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-22x^{2}-\left(-39xy\right)-9y^{2}
To find the opposite of 22x^{2}-39xy+9y^{2}, find the opposite of each term.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-22x^{2}+39xy-9y^{2}
The opposite of -39xy is 39xy.
4x^{2}-y^{2}+\left(-6x+4y\right)\left(-2y-3x\right)-22x^{2}+39xy-9y^{2}
Use the distributive property to multiply -2 by 3x-2y.
4x^{2}-y^{2}+12xy+18x^{2}-8y^{2}-12yx-22x^{2}+39xy-9y^{2}
Apply the distributive property by multiplying each term of -6x+4y by each term of -2y-3x.
4x^{2}-y^{2}+18x^{2}-8y^{2}-22x^{2}+39xy-9y^{2}
Combine 12xy and -12yx to get 0.
22x^{2}-y^{2}-8y^{2}-22x^{2}+39xy-9y^{2}
Combine 4x^{2} and 18x^{2} to get 22x^{2}.
22x^{2}-9y^{2}-22x^{2}+39xy-9y^{2}
Combine -y^{2} and -8y^{2} to get -9y^{2}.
-9y^{2}+39xy-9y^{2}
Combine 22x^{2} and -22x^{2} to get 0.
-18y^{2}+39xy
Combine -9y^{2} and -9y^{2} to get -18y^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}