Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2x\right)^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Consider \left(2x-y\right)\left(y+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(22x^{2}-33xy-6yx+9y^{2}\right)
Apply the distributive property by multiplying each term of 11x-3y by each term of 2x-3y.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(22x^{2}-39xy+9y^{2}\right)
Combine -33xy and -6yx to get -39xy.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-22x^{2}-\left(-39xy\right)-9y^{2}
To find the opposite of 22x^{2}-39xy+9y^{2}, find the opposite of each term.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-22x^{2}+39xy-9y^{2}
The opposite of -39xy is 39xy.
4x^{2}-y^{2}+\left(-6x+4y\right)\left(-2y-3x\right)-22x^{2}+39xy-9y^{2}
Use the distributive property to multiply -2 by 3x-2y.
4x^{2}-y^{2}+12xy+18x^{2}-8y^{2}-12yx-22x^{2}+39xy-9y^{2}
Apply the distributive property by multiplying each term of -6x+4y by each term of -2y-3x.
4x^{2}-y^{2}+18x^{2}-8y^{2}-22x^{2}+39xy-9y^{2}
Combine 12xy and -12yx to get 0.
22x^{2}-y^{2}-8y^{2}-22x^{2}+39xy-9y^{2}
Combine 4x^{2} and 18x^{2} to get 22x^{2}.
22x^{2}-9y^{2}-22x^{2}+39xy-9y^{2}
Combine -y^{2} and -8y^{2} to get -9y^{2}.
-9y^{2}+39xy-9y^{2}
Combine 22x^{2} and -22x^{2} to get 0.
-18y^{2}+39xy
Combine -9y^{2} and -9y^{2} to get -18y^{2}.
\left(2x\right)^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Consider \left(2x-y\right)\left(y+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Expand \left(2x\right)^{2}.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(11x-3y\right)\left(2x-3y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(22x^{2}-33xy-6yx+9y^{2}\right)
Apply the distributive property by multiplying each term of 11x-3y by each term of 2x-3y.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-\left(22x^{2}-39xy+9y^{2}\right)
Combine -33xy and -6yx to get -39xy.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-22x^{2}-\left(-39xy\right)-9y^{2}
To find the opposite of 22x^{2}-39xy+9y^{2}, find the opposite of each term.
4x^{2}-y^{2}-2\left(3x-2y\right)\left(-2y-3x\right)-22x^{2}+39xy-9y^{2}
The opposite of -39xy is 39xy.
4x^{2}-y^{2}+\left(-6x+4y\right)\left(-2y-3x\right)-22x^{2}+39xy-9y^{2}
Use the distributive property to multiply -2 by 3x-2y.
4x^{2}-y^{2}+12xy+18x^{2}-8y^{2}-12yx-22x^{2}+39xy-9y^{2}
Apply the distributive property by multiplying each term of -6x+4y by each term of -2y-3x.
4x^{2}-y^{2}+18x^{2}-8y^{2}-22x^{2}+39xy-9y^{2}
Combine 12xy and -12yx to get 0.
22x^{2}-y^{2}-8y^{2}-22x^{2}+39xy-9y^{2}
Combine 4x^{2} and 18x^{2} to get 22x^{2}.
22x^{2}-9y^{2}-22x^{2}+39xy-9y^{2}
Combine -y^{2} and -8y^{2} to get -9y^{2}.
-9y^{2}+39xy-9y^{2}
Combine 22x^{2} and -22x^{2} to get 0.
-18y^{2}+39xy
Combine -9y^{2} and -9y^{2} to get -18y^{2}.