Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image

Similar Problems from Web Search

Share

2x-y+iy-ix=1+3i
Use the distributive property to multiply y-x by i.
2x+\left(-1+i\right)y-ix=1+3i
Combine -y and iy to get \left(-1+i\right)y.
\left(2-i\right)x+\left(-1+i\right)y=1+3i
Combine 2x and -ix to get \left(2-i\right)x.
\left(2-i\right)x=1+3i-\left(-1+i\right)y
Subtract \left(-1+i\right)y from both sides.
\left(2-i\right)x=1+3i+\left(1-i\right)y
Multiply -1 and -1+i to get 1-i.
\left(2-i\right)x=\left(1-i\right)y+\left(1+3i\right)
The equation is in standard form.
\frac{\left(2-i\right)x}{2-i}=\frac{\left(1-i\right)y+\left(1+3i\right)}{2-i}
Divide both sides by 2-i.
x=\frac{\left(1-i\right)y+\left(1+3i\right)}{2-i}
Dividing by 2-i undoes the multiplication by 2-i.
x=\left(\frac{3}{5}-\frac{1}{5}i\right)y+\left(-\frac{1}{5}+\frac{7}{5}i\right)
Divide 1+3i+\left(1-i\right)y by 2-i.
2x-y+iy-ix=1+3i
Use the distributive property to multiply y-x by i.
2x+\left(-1+i\right)y-ix=1+3i
Combine -y and iy to get \left(-1+i\right)y.
\left(2-i\right)x+\left(-1+i\right)y=1+3i
Combine 2x and -ix to get \left(2-i\right)x.
\left(-1+i\right)y=1+3i-\left(2-i\right)x
Subtract \left(2-i\right)x from both sides.
\left(-1+i\right)y=1+3i+\left(-2+i\right)x
Multiply -1 and 2-i to get -2+i.
\left(-1+i\right)y=\left(-2+i\right)x+\left(1+3i\right)
The equation is in standard form.
\frac{\left(-1+i\right)y}{-1+i}=\frac{\left(-2+i\right)x+\left(1+3i\right)}{-1+i}
Divide both sides by -1+i.
y=\frac{\left(-2+i\right)x+\left(1+3i\right)}{-1+i}
Dividing by -1+i undoes the multiplication by -1+i.
y=\left(\frac{3}{2}+\frac{1}{2}i\right)x+\left(1-2i\right)
Divide 1+3i+\left(-2+i\right)x by -1+i.