Solve for x
x = -\frac{7}{2} = -3\frac{1}{2} = -3.5
x=4
x=\frac{1-\sqrt{65}}{4}\approx -1.765564437
x = \frac{\sqrt{65} + 1}{4} \approx 2.265564437
Graph
Share
Copied to clipboard
\left(2x^{3}-18x-7x^{2}+63\right)\left(2x+5\right)=91
Use the distributive property to multiply 2x-7 by x^{2}-9.
4x^{4}-4x^{3}-71x^{2}+36x+315=91
Use the distributive property to multiply 2x^{3}-18x-7x^{2}+63 by 2x+5 and combine like terms.
4x^{4}-4x^{3}-71x^{2}+36x+315-91=0
Subtract 91 from both sides.
4x^{4}-4x^{3}-71x^{2}+36x+224=0
Subtract 91 from 315 to get 224.
±56,±112,±224,±28,±14,±8,±16,±32,±7,±4,±\frac{7}{2},±2,±\frac{7}{4},±1,±\frac{1}{2},±\frac{1}{4}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 224 and q divides the leading coefficient 4. List all candidates \frac{p}{q}.
x=4
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4x^{3}+12x^{2}-23x-56=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 4x^{4}-4x^{3}-71x^{2}+36x+224 by x-4 to get 4x^{3}+12x^{2}-23x-56. Solve the equation where the result equals to 0.
±14,±28,±56,±7,±\frac{7}{2},±2,±4,±8,±\frac{7}{4},±1,±\frac{1}{2},±\frac{1}{4}
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -56 and q divides the leading coefficient 4. List all candidates \frac{p}{q}.
x=-\frac{7}{2}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
2x^{2}-x-8=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 4x^{3}+12x^{2}-23x-56 by 2\left(x+\frac{7}{2}\right)=2x+7 to get 2x^{2}-x-8. Solve the equation where the result equals to 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 2 for a, -1 for b, and -8 for c in the quadratic formula.
x=\frac{1±\sqrt{65}}{4}
Do the calculations.
x=\frac{1-\sqrt{65}}{4} x=\frac{\sqrt{65}+1}{4}
Solve the equation 2x^{2}-x-8=0 when ± is plus and when ± is minus.
x=4 x=-\frac{7}{2} x=\frac{1-\sqrt{65}}{4} x=\frac{\sqrt{65}+1}{4}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}