Solve for x
x = \frac{\sqrt{401} + 17}{4} \approx 9.256246099
x=\frac{17-\sqrt{401}}{4}\approx -0.756246099
Graph
Share
Copied to clipboard
2x^{2}-5x-7-6\times 2x-7=0
Use the distributive property to multiply 2x-7 by x+1 and combine like terms.
2x^{2}-5x-7-12x-7=0
Multiply 6 and 2 to get 12.
2x^{2}-17x-7-7=0
Combine -5x and -12x to get -17x.
2x^{2}-17x-14=0
Subtract 7 from -7 to get -14.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 2\left(-14\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -17 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 2\left(-14\right)}}{2\times 2}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-8\left(-14\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-17\right)±\sqrt{289+112}}{2\times 2}
Multiply -8 times -14.
x=\frac{-\left(-17\right)±\sqrt{401}}{2\times 2}
Add 289 to 112.
x=\frac{17±\sqrt{401}}{2\times 2}
The opposite of -17 is 17.
x=\frac{17±\sqrt{401}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{401}+17}{4}
Now solve the equation x=\frac{17±\sqrt{401}}{4} when ± is plus. Add 17 to \sqrt{401}.
x=\frac{17-\sqrt{401}}{4}
Now solve the equation x=\frac{17±\sqrt{401}}{4} when ± is minus. Subtract \sqrt{401} from 17.
x=\frac{\sqrt{401}+17}{4} x=\frac{17-\sqrt{401}}{4}
The equation is now solved.
2x^{2}-5x-7-6\times 2x-7=0
Use the distributive property to multiply 2x-7 by x+1 and combine like terms.
2x^{2}-5x-7-12x-7=0
Multiply 6 and 2 to get 12.
2x^{2}-17x-7-7=0
Combine -5x and -12x to get -17x.
2x^{2}-17x-14=0
Subtract 7 from -7 to get -14.
2x^{2}-17x=14
Add 14 to both sides. Anything plus zero gives itself.
\frac{2x^{2}-17x}{2}=\frac{14}{2}
Divide both sides by 2.
x^{2}-\frac{17}{2}x=\frac{14}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{17}{2}x=7
Divide 14 by 2.
x^{2}-\frac{17}{2}x+\left(-\frac{17}{4}\right)^{2}=7+\left(-\frac{17}{4}\right)^{2}
Divide -\frac{17}{2}, the coefficient of the x term, by 2 to get -\frac{17}{4}. Then add the square of -\frac{17}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{2}x+\frac{289}{16}=7+\frac{289}{16}
Square -\frac{17}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{2}x+\frac{289}{16}=\frac{401}{16}
Add 7 to \frac{289}{16}.
\left(x-\frac{17}{4}\right)^{2}=\frac{401}{16}
Factor x^{2}-\frac{17}{2}x+\frac{289}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{4}\right)^{2}}=\sqrt{\frac{401}{16}}
Take the square root of both sides of the equation.
x-\frac{17}{4}=\frac{\sqrt{401}}{4} x-\frac{17}{4}=-\frac{\sqrt{401}}{4}
Simplify.
x=\frac{\sqrt{401}+17}{4} x=\frac{17-\sqrt{401}}{4}
Add \frac{17}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}