Evaluate
3y+10y^{2}+10x-44xy
Expand
3y+10y^{2}+10x-44xy
Share
Copied to clipboard
16x^{2}-4xy+2x-40yx+10y^{2}-5y-32x+8y-4-\left(2-4x\right)\left(-2-4x\right)-10\left(-4\right)x
Apply the distributive property by multiplying each term of 2x-5y-4 by each term of 8x-2y+1.
16x^{2}-44xy+2x+10y^{2}-5y-32x+8y-4-\left(2-4x\right)\left(-2-4x\right)-10\left(-4\right)x
Combine -4xy and -40yx to get -44xy.
16x^{2}-44xy-30x+10y^{2}-5y+8y-4-\left(2-4x\right)\left(-2-4x\right)-10\left(-4\right)x
Combine 2x and -32x to get -30x.
16x^{2}-44xy-30x+10y^{2}+3y-4-\left(2-4x\right)\left(-2-4x\right)-10\left(-4\right)x
Combine -5y and 8y to get 3y.
16x^{2}-44xy-30x+10y^{2}+3y-4-\left(-4-8x+8x+16x^{2}\right)-10\left(-4\right)x
Apply the distributive property by multiplying each term of 2-4x by each term of -2-4x.
16x^{2}-44xy-30x+10y^{2}+3y-4-\left(-4+16x^{2}\right)-10\left(-4\right)x
Combine -8x and 8x to get 0.
16x^{2}-44xy-30x+10y^{2}+3y-4-\left(-4\right)-16x^{2}-10\left(-4\right)x
To find the opposite of -4+16x^{2}, find the opposite of each term.
16x^{2}-44xy-30x+10y^{2}+3y-4+4-16x^{2}-10\left(-4\right)x
The opposite of -4 is 4.
16x^{2}-44xy-30x+10y^{2}+3y-16x^{2}-10\left(-4\right)x
Add -4 and 4 to get 0.
-44xy-30x+10y^{2}+3y-10\left(-4\right)x
Combine 16x^{2} and -16x^{2} to get 0.
-44xy-30x+10y^{2}+3y-\left(-40x\right)
Multiply 10 and -4 to get -40.
-44xy-30x+10y^{2}+3y+40x
The opposite of -40x is 40x.
-44xy+10x+10y^{2}+3y
Combine -30x and 40x to get 10x.
16x^{2}-4xy+2x-40yx+10y^{2}-5y-32x+8y-4-\left(2-4x\right)\left(-2-4x\right)-10\left(-4\right)x
Apply the distributive property by multiplying each term of 2x-5y-4 by each term of 8x-2y+1.
16x^{2}-44xy+2x+10y^{2}-5y-32x+8y-4-\left(2-4x\right)\left(-2-4x\right)-10\left(-4\right)x
Combine -4xy and -40yx to get -44xy.
16x^{2}-44xy-30x+10y^{2}-5y+8y-4-\left(2-4x\right)\left(-2-4x\right)-10\left(-4\right)x
Combine 2x and -32x to get -30x.
16x^{2}-44xy-30x+10y^{2}+3y-4-\left(2-4x\right)\left(-2-4x\right)-10\left(-4\right)x
Combine -5y and 8y to get 3y.
16x^{2}-44xy-30x+10y^{2}+3y-4-\left(-4-8x+8x+16x^{2}\right)-10\left(-4\right)x
Apply the distributive property by multiplying each term of 2-4x by each term of -2-4x.
16x^{2}-44xy-30x+10y^{2}+3y-4-\left(-4+16x^{2}\right)-10\left(-4\right)x
Combine -8x and 8x to get 0.
16x^{2}-44xy-30x+10y^{2}+3y-4-\left(-4\right)-16x^{2}-10\left(-4\right)x
To find the opposite of -4+16x^{2}, find the opposite of each term.
16x^{2}-44xy-30x+10y^{2}+3y-4+4-16x^{2}-10\left(-4\right)x
The opposite of -4 is 4.
16x^{2}-44xy-30x+10y^{2}+3y-16x^{2}-10\left(-4\right)x
Add -4 and 4 to get 0.
-44xy-30x+10y^{2}+3y-10\left(-4\right)x
Combine 16x^{2} and -16x^{2} to get 0.
-44xy-30x+10y^{2}+3y-\left(-40x\right)
Multiply 10 and -4 to get -40.
-44xy-30x+10y^{2}+3y+40x
The opposite of -40x is 40x.
-44xy+10x+10y^{2}+3y
Combine -30x and 40x to get 10x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}