Solve for x
x=-19
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
Graph
Share
Copied to clipboard
2x^{2}+13x-45+4x^{2}=\left(2x-5\right)^{2}+25
Use the distributive property to multiply 2x-5 by x+9 and combine like terms.
6x^{2}+13x-45=\left(2x-5\right)^{2}+25
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}+13x-45=4x^{2}-20x+25+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
6x^{2}+13x-45=4x^{2}-20x+50
Add 25 and 25 to get 50.
6x^{2}+13x-45-4x^{2}=-20x+50
Subtract 4x^{2} from both sides.
2x^{2}+13x-45=-20x+50
Combine 6x^{2} and -4x^{2} to get 2x^{2}.
2x^{2}+13x-45+20x=50
Add 20x to both sides.
2x^{2}+33x-45=50
Combine 13x and 20x to get 33x.
2x^{2}+33x-45-50=0
Subtract 50 from both sides.
2x^{2}+33x-95=0
Subtract 50 from -45 to get -95.
a+b=33 ab=2\left(-95\right)=-190
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx-95. To find a and b, set up a system to be solved.
-1,190 -2,95 -5,38 -10,19
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -190.
-1+190=189 -2+95=93 -5+38=33 -10+19=9
Calculate the sum for each pair.
a=-5 b=38
The solution is the pair that gives sum 33.
\left(2x^{2}-5x\right)+\left(38x-95\right)
Rewrite 2x^{2}+33x-95 as \left(2x^{2}-5x\right)+\left(38x-95\right).
x\left(2x-5\right)+19\left(2x-5\right)
Factor out x in the first and 19 in the second group.
\left(2x-5\right)\left(x+19\right)
Factor out common term 2x-5 by using distributive property.
x=\frac{5}{2} x=-19
To find equation solutions, solve 2x-5=0 and x+19=0.
2x^{2}+13x-45+4x^{2}=\left(2x-5\right)^{2}+25
Use the distributive property to multiply 2x-5 by x+9 and combine like terms.
6x^{2}+13x-45=\left(2x-5\right)^{2}+25
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}+13x-45=4x^{2}-20x+25+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
6x^{2}+13x-45=4x^{2}-20x+50
Add 25 and 25 to get 50.
6x^{2}+13x-45-4x^{2}=-20x+50
Subtract 4x^{2} from both sides.
2x^{2}+13x-45=-20x+50
Combine 6x^{2} and -4x^{2} to get 2x^{2}.
2x^{2}+13x-45+20x=50
Add 20x to both sides.
2x^{2}+33x-45=50
Combine 13x and 20x to get 33x.
2x^{2}+33x-45-50=0
Subtract 50 from both sides.
2x^{2}+33x-95=0
Subtract 50 from -45 to get -95.
x=\frac{-33±\sqrt{33^{2}-4\times 2\left(-95\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 33 for b, and -95 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-33±\sqrt{1089-4\times 2\left(-95\right)}}{2\times 2}
Square 33.
x=\frac{-33±\sqrt{1089-8\left(-95\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-33±\sqrt{1089+760}}{2\times 2}
Multiply -8 times -95.
x=\frac{-33±\sqrt{1849}}{2\times 2}
Add 1089 to 760.
x=\frac{-33±43}{2\times 2}
Take the square root of 1849.
x=\frac{-33±43}{4}
Multiply 2 times 2.
x=\frac{10}{4}
Now solve the equation x=\frac{-33±43}{4} when ± is plus. Add -33 to 43.
x=\frac{5}{2}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{76}{4}
Now solve the equation x=\frac{-33±43}{4} when ± is minus. Subtract 43 from -33.
x=-19
Divide -76 by 4.
x=\frac{5}{2} x=-19
The equation is now solved.
2x^{2}+13x-45+4x^{2}=\left(2x-5\right)^{2}+25
Use the distributive property to multiply 2x-5 by x+9 and combine like terms.
6x^{2}+13x-45=\left(2x-5\right)^{2}+25
Combine 2x^{2} and 4x^{2} to get 6x^{2}.
6x^{2}+13x-45=4x^{2}-20x+25+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
6x^{2}+13x-45=4x^{2}-20x+50
Add 25 and 25 to get 50.
6x^{2}+13x-45-4x^{2}=-20x+50
Subtract 4x^{2} from both sides.
2x^{2}+13x-45=-20x+50
Combine 6x^{2} and -4x^{2} to get 2x^{2}.
2x^{2}+13x-45+20x=50
Add 20x to both sides.
2x^{2}+33x-45=50
Combine 13x and 20x to get 33x.
2x^{2}+33x=50+45
Add 45 to both sides.
2x^{2}+33x=95
Add 50 and 45 to get 95.
\frac{2x^{2}+33x}{2}=\frac{95}{2}
Divide both sides by 2.
x^{2}+\frac{33}{2}x=\frac{95}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{33}{2}x+\left(\frac{33}{4}\right)^{2}=\frac{95}{2}+\left(\frac{33}{4}\right)^{2}
Divide \frac{33}{2}, the coefficient of the x term, by 2 to get \frac{33}{4}. Then add the square of \frac{33}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{33}{2}x+\frac{1089}{16}=\frac{95}{2}+\frac{1089}{16}
Square \frac{33}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{33}{2}x+\frac{1089}{16}=\frac{1849}{16}
Add \frac{95}{2} to \frac{1089}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{33}{4}\right)^{2}=\frac{1849}{16}
Factor x^{2}+\frac{33}{2}x+\frac{1089}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{33}{4}\right)^{2}}=\sqrt{\frac{1849}{16}}
Take the square root of both sides of the equation.
x+\frac{33}{4}=\frac{43}{4} x+\frac{33}{4}=-\frac{43}{4}
Simplify.
x=\frac{5}{2} x=-19
Subtract \frac{33}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}