Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

18x^{3}-8x-45x^{2}+20=\left(18x^{2}-8\right)\left(x-8\right)
Use the distributive property to multiply 2x-5 by 9x^{2}-4.
18x^{3}-8x-45x^{2}+20=18x^{3}-144x^{2}-8x+64
Use the distributive property to multiply 18x^{2}-8 by x-8.
18x^{3}-8x-45x^{2}+20-18x^{3}=-144x^{2}-8x+64
Subtract 18x^{3} from both sides.
-8x-45x^{2}+20=-144x^{2}-8x+64
Combine 18x^{3} and -18x^{3} to get 0.
-8x-45x^{2}+20+144x^{2}=-8x+64
Add 144x^{2} to both sides.
-8x+99x^{2}+20=-8x+64
Combine -45x^{2} and 144x^{2} to get 99x^{2}.
-8x+99x^{2}+20+8x=64
Add 8x to both sides.
99x^{2}+20=64
Combine -8x and 8x to get 0.
99x^{2}+20-64=0
Subtract 64 from both sides.
99x^{2}-44=0
Subtract 64 from 20 to get -44.
9x^{2}-4=0
Divide both sides by 11.
\left(3x-2\right)\left(3x+2\right)=0
Consider 9x^{2}-4. Rewrite 9x^{2}-4 as \left(3x\right)^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{3} x=-\frac{2}{3}
To find equation solutions, solve 3x-2=0 and 3x+2=0.
18x^{3}-8x-45x^{2}+20=\left(18x^{2}-8\right)\left(x-8\right)
Use the distributive property to multiply 2x-5 by 9x^{2}-4.
18x^{3}-8x-45x^{2}+20=18x^{3}-144x^{2}-8x+64
Use the distributive property to multiply 18x^{2}-8 by x-8.
18x^{3}-8x-45x^{2}+20-18x^{3}=-144x^{2}-8x+64
Subtract 18x^{3} from both sides.
-8x-45x^{2}+20=-144x^{2}-8x+64
Combine 18x^{3} and -18x^{3} to get 0.
-8x-45x^{2}+20+144x^{2}=-8x+64
Add 144x^{2} to both sides.
-8x+99x^{2}+20=-8x+64
Combine -45x^{2} and 144x^{2} to get 99x^{2}.
-8x+99x^{2}+20+8x=64
Add 8x to both sides.
99x^{2}+20=64
Combine -8x and 8x to get 0.
99x^{2}=64-20
Subtract 20 from both sides.
99x^{2}=44
Subtract 20 from 64 to get 44.
x^{2}=\frac{44}{99}
Divide both sides by 99.
x^{2}=\frac{4}{9}
Reduce the fraction \frac{44}{99} to lowest terms by extracting and canceling out 11.
x=\frac{2}{3} x=-\frac{2}{3}
Take the square root of both sides of the equation.
18x^{3}-8x-45x^{2}+20=\left(18x^{2}-8\right)\left(x-8\right)
Use the distributive property to multiply 2x-5 by 9x^{2}-4.
18x^{3}-8x-45x^{2}+20=18x^{3}-144x^{2}-8x+64
Use the distributive property to multiply 18x^{2}-8 by x-8.
18x^{3}-8x-45x^{2}+20-18x^{3}=-144x^{2}-8x+64
Subtract 18x^{3} from both sides.
-8x-45x^{2}+20=-144x^{2}-8x+64
Combine 18x^{3} and -18x^{3} to get 0.
-8x-45x^{2}+20+144x^{2}=-8x+64
Add 144x^{2} to both sides.
-8x+99x^{2}+20=-8x+64
Combine -45x^{2} and 144x^{2} to get 99x^{2}.
-8x+99x^{2}+20+8x=64
Add 8x to both sides.
99x^{2}+20=64
Combine -8x and 8x to get 0.
99x^{2}+20-64=0
Subtract 64 from both sides.
99x^{2}-44=0
Subtract 64 from 20 to get -44.
x=\frac{0±\sqrt{0^{2}-4\times 99\left(-44\right)}}{2\times 99}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 99 for a, 0 for b, and -44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 99\left(-44\right)}}{2\times 99}
Square 0.
x=\frac{0±\sqrt{-396\left(-44\right)}}{2\times 99}
Multiply -4 times 99.
x=\frac{0±\sqrt{17424}}{2\times 99}
Multiply -396 times -44.
x=\frac{0±132}{2\times 99}
Take the square root of 17424.
x=\frac{0±132}{198}
Multiply 2 times 99.
x=\frac{2}{3}
Now solve the equation x=\frac{0±132}{198} when ± is plus. Reduce the fraction \frac{132}{198} to lowest terms by extracting and canceling out 66.
x=-\frac{2}{3}
Now solve the equation x=\frac{0±132}{198} when ± is minus. Reduce the fraction \frac{-132}{198} to lowest terms by extracting and canceling out 66.
x=\frac{2}{3} x=-\frac{2}{3}
The equation is now solved.