Solve for x
x<7
Graph
Share
Copied to clipboard
4x^{2}-20x+25+3\left(x-1\right)>4x\left(x-4\right)+15
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
4x^{2}-20x+25+3x-3>4x\left(x-4\right)+15
Use the distributive property to multiply 3 by x-1.
4x^{2}-17x+25-3>4x\left(x-4\right)+15
Combine -20x and 3x to get -17x.
4x^{2}-17x+22>4x\left(x-4\right)+15
Subtract 3 from 25 to get 22.
4x^{2}-17x+22>4x^{2}-16x+15
Use the distributive property to multiply 4x by x-4.
4x^{2}-17x+22-4x^{2}>-16x+15
Subtract 4x^{2} from both sides.
-17x+22>-16x+15
Combine 4x^{2} and -4x^{2} to get 0.
-17x+22+16x>15
Add 16x to both sides.
-x+22>15
Combine -17x and 16x to get -x.
-x>15-22
Subtract 22 from both sides.
-x>-7
Subtract 22 from 15 to get -7.
x<\frac{-7}{-1}
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
x<7
Fraction \frac{-7}{-1} can be simplified to 7 by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}