Solve for x (complex solution)
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3}\approx 18.333333333+49.792303665i
x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}\approx 18.333333333-49.792303665i
Graph
Share
Copied to clipboard
\left(2x-40\right)\left(3x-50\right)\times 130+2000\times 1000=64000
Add 30 and 100 to get 130.
\left(6x^{2}-220x+2000\right)\times 130+2000\times 1000=64000
Use the distributive property to multiply 2x-40 by 3x-50 and combine like terms.
780x^{2}-28600x+260000+2000\times 1000=64000
Use the distributive property to multiply 6x^{2}-220x+2000 by 130.
780x^{2}-28600x+260000+2000000=64000
Multiply 2000 and 1000 to get 2000000.
780x^{2}-28600x+2260000=64000
Add 260000 and 2000000 to get 2260000.
780x^{2}-28600x+2260000-64000=0
Subtract 64000 from both sides.
780x^{2}-28600x+2196000=0
Subtract 64000 from 2260000 to get 2196000.
x=\frac{-\left(-28600\right)±\sqrt{\left(-28600\right)^{2}-4\times 780\times 2196000}}{2\times 780}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 780 for a, -28600 for b, and 2196000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28600\right)±\sqrt{817960000-4\times 780\times 2196000}}{2\times 780}
Square -28600.
x=\frac{-\left(-28600\right)±\sqrt{817960000-3120\times 2196000}}{2\times 780}
Multiply -4 times 780.
x=\frac{-\left(-28600\right)±\sqrt{817960000-6851520000}}{2\times 780}
Multiply -3120 times 2196000.
x=\frac{-\left(-28600\right)±\sqrt{-6033560000}}{2\times 780}
Add 817960000 to -6851520000.
x=\frac{-\left(-28600\right)±200\sqrt{150839}i}{2\times 780}
Take the square root of -6033560000.
x=\frac{28600±200\sqrt{150839}i}{2\times 780}
The opposite of -28600 is 28600.
x=\frac{28600±200\sqrt{150839}i}{1560}
Multiply 2 times 780.
x=\frac{28600+200\sqrt{150839}i}{1560}
Now solve the equation x=\frac{28600±200\sqrt{150839}i}{1560} when ± is plus. Add 28600 to 200i\sqrt{150839}.
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
Divide 28600+200i\sqrt{150839} by 1560.
x=\frac{-200\sqrt{150839}i+28600}{1560}
Now solve the equation x=\frac{28600±200\sqrt{150839}i}{1560} when ± is minus. Subtract 200i\sqrt{150839} from 28600.
x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
Divide 28600-200i\sqrt{150839} by 1560.
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3} x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
The equation is now solved.
\left(2x-40\right)\left(3x-50\right)\times 130+2000\times 1000=64000
Add 30 and 100 to get 130.
\left(6x^{2}-220x+2000\right)\times 130+2000\times 1000=64000
Use the distributive property to multiply 2x-40 by 3x-50 and combine like terms.
780x^{2}-28600x+260000+2000\times 1000=64000
Use the distributive property to multiply 6x^{2}-220x+2000 by 130.
780x^{2}-28600x+260000+2000000=64000
Multiply 2000 and 1000 to get 2000000.
780x^{2}-28600x+2260000=64000
Add 260000 and 2000000 to get 2260000.
780x^{2}-28600x=64000-2260000
Subtract 2260000 from both sides.
780x^{2}-28600x=-2196000
Subtract 2260000 from 64000 to get -2196000.
\frac{780x^{2}-28600x}{780}=-\frac{2196000}{780}
Divide both sides by 780.
x^{2}+\left(-\frac{28600}{780}\right)x=-\frac{2196000}{780}
Dividing by 780 undoes the multiplication by 780.
x^{2}-\frac{110}{3}x=-\frac{2196000}{780}
Reduce the fraction \frac{-28600}{780} to lowest terms by extracting and canceling out 260.
x^{2}-\frac{110}{3}x=-\frac{36600}{13}
Reduce the fraction \frac{-2196000}{780} to lowest terms by extracting and canceling out 60.
x^{2}-\frac{110}{3}x+\left(-\frac{55}{3}\right)^{2}=-\frac{36600}{13}+\left(-\frac{55}{3}\right)^{2}
Divide -\frac{110}{3}, the coefficient of the x term, by 2 to get -\frac{55}{3}. Then add the square of -\frac{55}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=-\frac{36600}{13}+\frac{3025}{9}
Square -\frac{55}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{110}{3}x+\frac{3025}{9}=-\frac{290075}{117}
Add -\frac{36600}{13} to \frac{3025}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{55}{3}\right)^{2}=-\frac{290075}{117}
Factor x^{2}-\frac{110}{3}x+\frac{3025}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{3}\right)^{2}}=\sqrt{-\frac{290075}{117}}
Take the square root of both sides of the equation.
x-\frac{55}{3}=\frac{5\sqrt{150839}i}{39} x-\frac{55}{3}=-\frac{5\sqrt{150839}i}{39}
Simplify.
x=\frac{5\sqrt{150839}i}{39}+\frac{55}{3} x=-\frac{5\sqrt{150839}i}{39}+\frac{55}{3}
Add \frac{55}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}