Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x-4\right)\left(\frac{3\left(7x+2\right)}{15}+\frac{5\times 2\left(1-3x\right)}{15}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply \frac{7x+2}{5} times \frac{3}{3}. Multiply \frac{2\left(1-3x\right)}{3} times \frac{5}{5}.
\left(2x-4\right)\times \frac{3\left(7x+2\right)+5\times 2\left(1-3x\right)}{15}
Since \frac{3\left(7x+2\right)}{15} and \frac{5\times 2\left(1-3x\right)}{15} have the same denominator, add them by adding their numerators.
\left(2x-4\right)\times \frac{21x+6+10-30x}{15}
Do the multiplications in 3\left(7x+2\right)+5\times 2\left(1-3x\right).
\left(2x-4\right)\times \frac{-9x+16}{15}
Combine like terms in 21x+6+10-30x.
\frac{\left(2x-4\right)\left(-9x+16\right)}{15}
Express \left(2x-4\right)\times \frac{-9x+16}{15} as a single fraction.
\frac{-18x^{2}+32x+36x-64}{15}
Apply the distributive property by multiplying each term of 2x-4 by each term of -9x+16.
\frac{-18x^{2}+68x-64}{15}
Combine 32x and 36x to get 68x.
\left(2x-4\right)\left(\frac{3\left(7x+2\right)}{15}+\frac{5\times 2\left(1-3x\right)}{15}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 3 is 15. Multiply \frac{7x+2}{5} times \frac{3}{3}. Multiply \frac{2\left(1-3x\right)}{3} times \frac{5}{5}.
\left(2x-4\right)\times \frac{3\left(7x+2\right)+5\times 2\left(1-3x\right)}{15}
Since \frac{3\left(7x+2\right)}{15} and \frac{5\times 2\left(1-3x\right)}{15} have the same denominator, add them by adding their numerators.
\left(2x-4\right)\times \frac{21x+6+10-30x}{15}
Do the multiplications in 3\left(7x+2\right)+5\times 2\left(1-3x\right).
\left(2x-4\right)\times \frac{-9x+16}{15}
Combine like terms in 21x+6+10-30x.
\frac{\left(2x-4\right)\left(-9x+16\right)}{15}
Express \left(2x-4\right)\times \frac{-9x+16}{15} as a single fraction.
\frac{-18x^{2}+32x+36x-64}{15}
Apply the distributive property by multiplying each term of 2x-4 by each term of -9x+16.
\frac{-18x^{2}+68x-64}{15}
Combine 32x and 36x to get 68x.