Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(2x\right)^{2}-\left(3y\right)^{2}-\left(5y-4x\right)\left(4x+5y\right)
Consider \left(2x-3y\right)\left(3y+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-\left(3y\right)^{2}-\left(5y-4x\right)\left(4x+5y\right)
Expand \left(2x\right)^{2}.
4x^{2}-\left(3y\right)^{2}-\left(5y-4x\right)\left(4x+5y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-3^{2}y^{2}-\left(5y-4x\right)\left(4x+5y\right)
Expand \left(3y\right)^{2}.
4x^{2}-9y^{2}-\left(5y-4x\right)\left(4x+5y\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9y^{2}-\left(\left(5y\right)^{2}-\left(4x\right)^{2}\right)
Consider \left(5y-4x\right)\left(4x+5y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x^{2}-9y^{2}-\left(5^{2}y^{2}-\left(4x\right)^{2}\right)
Expand \left(5y\right)^{2}.
4x^{2}-9y^{2}-\left(25y^{2}-\left(4x\right)^{2}\right)
Calculate 5 to the power of 2 and get 25.
4x^{2}-9y^{2}-\left(25y^{2}-4^{2}x^{2}\right)
Expand \left(4x\right)^{2}.
4x^{2}-9y^{2}-\left(25y^{2}-16x^{2}\right)
Calculate 4 to the power of 2 and get 16.
4x^{2}-9y^{2}-25y^{2}-\left(-16x^{2}\right)
To find the opposite of 25y^{2}-16x^{2}, find the opposite of each term.
4x^{2}-9y^{2}-25y^{2}+16x^{2}
The opposite of -16x^{2} is 16x^{2}.
4x^{2}-34y^{2}+16x^{2}
Combine -9y^{2} and -25y^{2} to get -34y^{2}.
20x^{2}-34y^{2}
Combine 4x^{2} and 16x^{2} to get 20x^{2}.
\left(2x\right)^{2}-\left(3y\right)^{2}-\left(5y-4x\right)\left(4x+5y\right)
Consider \left(2x-3y\right)\left(3y+2x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2^{2}x^{2}-\left(3y\right)^{2}-\left(5y-4x\right)\left(4x+5y\right)
Expand \left(2x\right)^{2}.
4x^{2}-\left(3y\right)^{2}-\left(5y-4x\right)\left(4x+5y\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}-3^{2}y^{2}-\left(5y-4x\right)\left(4x+5y\right)
Expand \left(3y\right)^{2}.
4x^{2}-9y^{2}-\left(5y-4x\right)\left(4x+5y\right)
Calculate 3 to the power of 2 and get 9.
4x^{2}-9y^{2}-\left(\left(5y\right)^{2}-\left(4x\right)^{2}\right)
Consider \left(5y-4x\right)\left(4x+5y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4x^{2}-9y^{2}-\left(5^{2}y^{2}-\left(4x\right)^{2}\right)
Expand \left(5y\right)^{2}.
4x^{2}-9y^{2}-\left(25y^{2}-\left(4x\right)^{2}\right)
Calculate 5 to the power of 2 and get 25.
4x^{2}-9y^{2}-\left(25y^{2}-4^{2}x^{2}\right)
Expand \left(4x\right)^{2}.
4x^{2}-9y^{2}-\left(25y^{2}-16x^{2}\right)
Calculate 4 to the power of 2 and get 16.
4x^{2}-9y^{2}-25y^{2}-\left(-16x^{2}\right)
To find the opposite of 25y^{2}-16x^{2}, find the opposite of each term.
4x^{2}-9y^{2}-25y^{2}+16x^{2}
The opposite of -16x^{2} is 16x^{2}.
4x^{2}-34y^{2}+16x^{2}
Combine -9y^{2} and -25y^{2} to get -34y^{2}.
20x^{2}-34y^{2}
Combine 4x^{2} and 16x^{2} to get 20x^{2}.