Solve for x
x=\frac{\sqrt{2679811121}}{52}+\frac{4003}{4}\approx 1996.267156383
x=-\frac{\sqrt{2679811121}}{52}+\frac{4003}{4}\approx 5.232843617
Graph
Share
Copied to clipboard
\left(2x-3\right)\left(x-2000\right)\left(30+100\right)+2000\times 1000=64000
Multiply 40 and 50 to get 2000.
\left(2x-3\right)\left(x-2000\right)\times 130+2000\times 1000=64000
Add 30 and 100 to get 130.
\left(2x^{2}-4003x+6000\right)\times 130+2000\times 1000=64000
Use the distributive property to multiply 2x-3 by x-2000 and combine like terms.
260x^{2}-520390x+780000+2000\times 1000=64000
Use the distributive property to multiply 2x^{2}-4003x+6000 by 130.
260x^{2}-520390x+780000+2000000=64000
Multiply 2000 and 1000 to get 2000000.
260x^{2}-520390x+2780000=64000
Add 780000 and 2000000 to get 2780000.
260x^{2}-520390x+2780000-64000=0
Subtract 64000 from both sides.
260x^{2}-520390x+2716000=0
Subtract 64000 from 2780000 to get 2716000.
x=\frac{-\left(-520390\right)±\sqrt{\left(-520390\right)^{2}-4\times 260\times 2716000}}{2\times 260}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 260 for a, -520390 for b, and 2716000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-520390\right)±\sqrt{270805752100-4\times 260\times 2716000}}{2\times 260}
Square -520390.
x=\frac{-\left(-520390\right)±\sqrt{270805752100-1040\times 2716000}}{2\times 260}
Multiply -4 times 260.
x=\frac{-\left(-520390\right)±\sqrt{270805752100-2824640000}}{2\times 260}
Multiply -1040 times 2716000.
x=\frac{-\left(-520390\right)±\sqrt{267981112100}}{2\times 260}
Add 270805752100 to -2824640000.
x=\frac{-\left(-520390\right)±10\sqrt{2679811121}}{2\times 260}
Take the square root of 267981112100.
x=\frac{520390±10\sqrt{2679811121}}{2\times 260}
The opposite of -520390 is 520390.
x=\frac{520390±10\sqrt{2679811121}}{520}
Multiply 2 times 260.
x=\frac{10\sqrt{2679811121}+520390}{520}
Now solve the equation x=\frac{520390±10\sqrt{2679811121}}{520} when ± is plus. Add 520390 to 10\sqrt{2679811121}.
x=\frac{\sqrt{2679811121}}{52}+\frac{4003}{4}
Divide 520390+10\sqrt{2679811121} by 520.
x=\frac{520390-10\sqrt{2679811121}}{520}
Now solve the equation x=\frac{520390±10\sqrt{2679811121}}{520} when ± is minus. Subtract 10\sqrt{2679811121} from 520390.
x=-\frac{\sqrt{2679811121}}{52}+\frac{4003}{4}
Divide 520390-10\sqrt{2679811121} by 520.
x=\frac{\sqrt{2679811121}}{52}+\frac{4003}{4} x=-\frac{\sqrt{2679811121}}{52}+\frac{4003}{4}
The equation is now solved.
\left(2x-3\right)\left(x-2000\right)\left(30+100\right)+2000\times 1000=64000
Multiply 40 and 50 to get 2000.
\left(2x-3\right)\left(x-2000\right)\times 130+2000\times 1000=64000
Add 30 and 100 to get 130.
\left(2x^{2}-4003x+6000\right)\times 130+2000\times 1000=64000
Use the distributive property to multiply 2x-3 by x-2000 and combine like terms.
260x^{2}-520390x+780000+2000\times 1000=64000
Use the distributive property to multiply 2x^{2}-4003x+6000 by 130.
260x^{2}-520390x+780000+2000000=64000
Multiply 2000 and 1000 to get 2000000.
260x^{2}-520390x+2780000=64000
Add 780000 and 2000000 to get 2780000.
260x^{2}-520390x=64000-2780000
Subtract 2780000 from both sides.
260x^{2}-520390x=-2716000
Subtract 2780000 from 64000 to get -2716000.
\frac{260x^{2}-520390x}{260}=-\frac{2716000}{260}
Divide both sides by 260.
x^{2}+\left(-\frac{520390}{260}\right)x=-\frac{2716000}{260}
Dividing by 260 undoes the multiplication by 260.
x^{2}-\frac{4003}{2}x=-\frac{2716000}{260}
Reduce the fraction \frac{-520390}{260} to lowest terms by extracting and canceling out 130.
x^{2}-\frac{4003}{2}x=-\frac{135800}{13}
Reduce the fraction \frac{-2716000}{260} to lowest terms by extracting and canceling out 20.
x^{2}-\frac{4003}{2}x+\left(-\frac{4003}{4}\right)^{2}=-\frac{135800}{13}+\left(-\frac{4003}{4}\right)^{2}
Divide -\frac{4003}{2}, the coefficient of the x term, by 2 to get -\frac{4003}{4}. Then add the square of -\frac{4003}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{4003}{2}x+\frac{16024009}{16}=-\frac{135800}{13}+\frac{16024009}{16}
Square -\frac{4003}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{4003}{2}x+\frac{16024009}{16}=\frac{206139317}{208}
Add -\frac{135800}{13} to \frac{16024009}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4003}{4}\right)^{2}=\frac{206139317}{208}
Factor x^{2}-\frac{4003}{2}x+\frac{16024009}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4003}{4}\right)^{2}}=\sqrt{\frac{206139317}{208}}
Take the square root of both sides of the equation.
x-\frac{4003}{4}=\frac{\sqrt{2679811121}}{52} x-\frac{4003}{4}=-\frac{\sqrt{2679811121}}{52}
Simplify.
x=\frac{\sqrt{2679811121}}{52}+\frac{4003}{4} x=-\frac{\sqrt{2679811121}}{52}+\frac{4003}{4}
Add \frac{4003}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}