Solve for x (complex solution)
x=-\frac{\sqrt{33}i}{3}\approx -0-1.914854216i
x=\frac{\sqrt{33}i}{3}\approx 1.914854216i
Graph
Share
Copied to clipboard
10x^{2}-13x-3-\left(x-6\right)\left(x+6\right)+13x=0
Use the distributive property to multiply 2x-3 by 5x+1 and combine like terms.
10x^{2}-13x-3-\left(x^{2}-36\right)+13x=0
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
10x^{2}-13x-3-x^{2}+36+13x=0
To find the opposite of x^{2}-36, find the opposite of each term.
9x^{2}-13x-3+36+13x=0
Combine 10x^{2} and -x^{2} to get 9x^{2}.
9x^{2}-13x+33+13x=0
Add -3 and 36 to get 33.
9x^{2}+33=0
Combine -13x and 13x to get 0.
9x^{2}=-33
Subtract 33 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-33}{9}
Divide both sides by 9.
x^{2}=-\frac{11}{3}
Reduce the fraction \frac{-33}{9} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{33}i}{3} x=-\frac{\sqrt{33}i}{3}
The equation is now solved.
10x^{2}-13x-3-\left(x-6\right)\left(x+6\right)+13x=0
Use the distributive property to multiply 2x-3 by 5x+1 and combine like terms.
10x^{2}-13x-3-\left(x^{2}-36\right)+13x=0
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
10x^{2}-13x-3-x^{2}+36+13x=0
To find the opposite of x^{2}-36, find the opposite of each term.
9x^{2}-13x-3+36+13x=0
Combine 10x^{2} and -x^{2} to get 9x^{2}.
9x^{2}-13x+33+13x=0
Add -3 and 36 to get 33.
9x^{2}+33=0
Combine -13x and 13x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 9\times 33}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and 33 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\times 33}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\times 33}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{-1188}}{2\times 9}
Multiply -36 times 33.
x=\frac{0±6\sqrt{33}i}{2\times 9}
Take the square root of -1188.
x=\frac{0±6\sqrt{33}i}{18}
Multiply 2 times 9.
x=\frac{\sqrt{33}i}{3}
Now solve the equation x=\frac{0±6\sqrt{33}i}{18} when ± is plus.
x=-\frac{\sqrt{33}i}{3}
Now solve the equation x=\frac{0±6\sqrt{33}i}{18} when ± is minus.
x=\frac{\sqrt{33}i}{3} x=-\frac{\sqrt{33}i}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}