Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}-13x-3-\left(x-6\right)\left(x+6\right)+13x=0
Use the distributive property to multiply 2x-3 by 5x+1 and combine like terms.
10x^{2}-13x-3-\left(x^{2}-36\right)+13x=0
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
10x^{2}-13x-3-x^{2}+36+13x=0
To find the opposite of x^{2}-36, find the opposite of each term.
9x^{2}-13x-3+36+13x=0
Combine 10x^{2} and -x^{2} to get 9x^{2}.
9x^{2}-13x+33+13x=0
Add -3 and 36 to get 33.
9x^{2}+33=0
Combine -13x and 13x to get 0.
9x^{2}=-33
Subtract 33 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-33}{9}
Divide both sides by 9.
x^{2}=-\frac{11}{3}
Reduce the fraction \frac{-33}{9} to lowest terms by extracting and canceling out 3.
x=\frac{\sqrt{33}i}{3} x=-\frac{\sqrt{33}i}{3}
The equation is now solved.
10x^{2}-13x-3-\left(x-6\right)\left(x+6\right)+13x=0
Use the distributive property to multiply 2x-3 by 5x+1 and combine like terms.
10x^{2}-13x-3-\left(x^{2}-36\right)+13x=0
Consider \left(x-6\right)\left(x+6\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 6.
10x^{2}-13x-3-x^{2}+36+13x=0
To find the opposite of x^{2}-36, find the opposite of each term.
9x^{2}-13x-3+36+13x=0
Combine 10x^{2} and -x^{2} to get 9x^{2}.
9x^{2}-13x+33+13x=0
Add -3 and 36 to get 33.
9x^{2}+33=0
Combine -13x and 13x to get 0.
x=\frac{0±\sqrt{0^{2}-4\times 9\times 33}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and 33 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\times 33}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\times 33}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{-1188}}{2\times 9}
Multiply -36 times 33.
x=\frac{0±6\sqrt{33}i}{2\times 9}
Take the square root of -1188.
x=\frac{0±6\sqrt{33}i}{18}
Multiply 2 times 9.
x=\frac{\sqrt{33}i}{3}
Now solve the equation x=\frac{0±6\sqrt{33}i}{18} when ± is plus.
x=-\frac{\sqrt{33}i}{3}
Now solve the equation x=\frac{0±6\sqrt{33}i}{18} when ± is minus.
x=\frac{\sqrt{33}i}{3} x=-\frac{\sqrt{33}i}{3}
The equation is now solved.