Solve for x
x=-\frac{5}{6}\approx -0.833333333
x=3
Graph
Share
Copied to clipboard
6x^{2}-13x+6=21
Use the distributive property to multiply 2x-3 by 3x-2 and combine like terms.
6x^{2}-13x+6-21=0
Subtract 21 from both sides.
6x^{2}-13x-15=0
Subtract 21 from 6 to get -15.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\left(-15\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, -13 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\left(-15\right)}}{2\times 6}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-24\left(-15\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-\left(-13\right)±\sqrt{169+360}}{2\times 6}
Multiply -24 times -15.
x=\frac{-\left(-13\right)±\sqrt{529}}{2\times 6}
Add 169 to 360.
x=\frac{-\left(-13\right)±23}{2\times 6}
Take the square root of 529.
x=\frac{13±23}{2\times 6}
The opposite of -13 is 13.
x=\frac{13±23}{12}
Multiply 2 times 6.
x=\frac{36}{12}
Now solve the equation x=\frac{13±23}{12} when ± is plus. Add 13 to 23.
x=3
Divide 36 by 12.
x=-\frac{10}{12}
Now solve the equation x=\frac{13±23}{12} when ± is minus. Subtract 23 from 13.
x=-\frac{5}{6}
Reduce the fraction \frac{-10}{12} to lowest terms by extracting and canceling out 2.
x=3 x=-\frac{5}{6}
The equation is now solved.
6x^{2}-13x+6=21
Use the distributive property to multiply 2x-3 by 3x-2 and combine like terms.
6x^{2}-13x=21-6
Subtract 6 from both sides.
6x^{2}-13x=15
Subtract 6 from 21 to get 15.
\frac{6x^{2}-13x}{6}=\frac{15}{6}
Divide both sides by 6.
x^{2}-\frac{13}{6}x=\frac{15}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}-\frac{13}{6}x=\frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=\frac{5}{2}+\left(-\frac{13}{12}\right)^{2}
Divide -\frac{13}{6}, the coefficient of the x term, by 2 to get -\frac{13}{12}. Then add the square of -\frac{13}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{5}{2}+\frac{169}{144}
Square -\frac{13}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{529}{144}
Add \frac{5}{2} to \frac{169}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{12}\right)^{2}=\frac{529}{144}
Factor x^{2}-\frac{13}{6}x+\frac{169}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
Take the square root of both sides of the equation.
x-\frac{13}{12}=\frac{23}{12} x-\frac{13}{12}=-\frac{23}{12}
Simplify.
x=3 x=-\frac{5}{6}
Add \frac{13}{12} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}