Solve for x
x=-1
x=1
Graph
Share
Copied to clipboard
6x^{2}-5x-6-\left(2x+3\right)\left(2-3x\right)=0
Use the distributive property to multiply 2x-3 by 3x+2 and combine like terms.
6x^{2}-5x-6-\left(-5x-6x^{2}+6\right)=0
Use the distributive property to multiply 2x+3 by 2-3x and combine like terms.
6x^{2}-5x-6+5x+6x^{2}-6=0
To find the opposite of -5x-6x^{2}+6, find the opposite of each term.
6x^{2}-6+6x^{2}-6=0
Combine -5x and 5x to get 0.
12x^{2}-6-6=0
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}-12=0
Subtract 6 from -6 to get -12.
x^{2}-1=0
Divide both sides by 12.
\left(x-1\right)\left(x+1\right)=0
Consider x^{2}-1. Rewrite x^{2}-1 as x^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
To find equation solutions, solve x-1=0 and x+1=0.
6x^{2}-5x-6-\left(2x+3\right)\left(2-3x\right)=0
Use the distributive property to multiply 2x-3 by 3x+2 and combine like terms.
6x^{2}-5x-6-\left(-5x-6x^{2}+6\right)=0
Use the distributive property to multiply 2x+3 by 2-3x and combine like terms.
6x^{2}-5x-6+5x+6x^{2}-6=0
To find the opposite of -5x-6x^{2}+6, find the opposite of each term.
6x^{2}-6+6x^{2}-6=0
Combine -5x and 5x to get 0.
12x^{2}-6-6=0
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}-12=0
Subtract 6 from -6 to get -12.
12x^{2}=12
Add 12 to both sides. Anything plus zero gives itself.
x^{2}=\frac{12}{12}
Divide both sides by 12.
x^{2}=1
Divide 12 by 12 to get 1.
x=1 x=-1
Take the square root of both sides of the equation.
6x^{2}-5x-6-\left(2x+3\right)\left(2-3x\right)=0
Use the distributive property to multiply 2x-3 by 3x+2 and combine like terms.
6x^{2}-5x-6-\left(-5x-6x^{2}+6\right)=0
Use the distributive property to multiply 2x+3 by 2-3x and combine like terms.
6x^{2}-5x-6+5x+6x^{2}-6=0
To find the opposite of -5x-6x^{2}+6, find the opposite of each term.
6x^{2}-6+6x^{2}-6=0
Combine -5x and 5x to get 0.
12x^{2}-6-6=0
Combine 6x^{2} and 6x^{2} to get 12x^{2}.
12x^{2}-12=0
Subtract 6 from -6 to get -12.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-12\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-12\right)}}{2\times 12}
Square 0.
x=\frac{0±\sqrt{-48\left(-12\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{0±\sqrt{576}}{2\times 12}
Multiply -48 times -12.
x=\frac{0±24}{2\times 12}
Take the square root of 576.
x=\frac{0±24}{24}
Multiply 2 times 12.
x=1
Now solve the equation x=\frac{0±24}{24} when ± is plus. Divide 24 by 24.
x=-1
Now solve the equation x=\frac{0±24}{24} when ± is minus. Divide -24 by 24.
x=1 x=-1
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}