Solve for x
x=-11
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
2x^{2}+19x-33-17=-9-2^{3}
Use the distributive property to multiply 2x-3 by x+11 and combine like terms.
2x^{2}+19x-50=-9-2^{3}
Subtract 17 from -33 to get -50.
2x^{2}+19x-50=-9-8
Calculate 2 to the power of 3 and get 8.
2x^{2}+19x-50=-17
Subtract 8 from -9 to get -17.
2x^{2}+19x-50+17=0
Add 17 to both sides.
2x^{2}+19x-33=0
Add -50 and 17 to get -33.
x=\frac{-19±\sqrt{19^{2}-4\times 2\left(-33\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 19 for b, and -33 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\times 2\left(-33\right)}}{2\times 2}
Square 19.
x=\frac{-19±\sqrt{361-8\left(-33\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-19±\sqrt{361+264}}{2\times 2}
Multiply -8 times -33.
x=\frac{-19±\sqrt{625}}{2\times 2}
Add 361 to 264.
x=\frac{-19±25}{2\times 2}
Take the square root of 625.
x=\frac{-19±25}{4}
Multiply 2 times 2.
x=\frac{6}{4}
Now solve the equation x=\frac{-19±25}{4} when ± is plus. Add -19 to 25.
x=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
x=-\frac{44}{4}
Now solve the equation x=\frac{-19±25}{4} when ± is minus. Subtract 25 from -19.
x=-11
Divide -44 by 4.
x=\frac{3}{2} x=-11
The equation is now solved.
2x^{2}+19x-33-17=-9-2^{3}
Use the distributive property to multiply 2x-3 by x+11 and combine like terms.
2x^{2}+19x-50=-9-2^{3}
Subtract 17 from -33 to get -50.
2x^{2}+19x-50=-9-8
Calculate 2 to the power of 3 and get 8.
2x^{2}+19x-50=-17
Subtract 8 from -9 to get -17.
2x^{2}+19x=-17+50
Add 50 to both sides.
2x^{2}+19x=33
Add -17 and 50 to get 33.
\frac{2x^{2}+19x}{2}=\frac{33}{2}
Divide both sides by 2.
x^{2}+\frac{19}{2}x=\frac{33}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\frac{19}{2}x+\left(\frac{19}{4}\right)^{2}=\frac{33}{2}+\left(\frac{19}{4}\right)^{2}
Divide \frac{19}{2}, the coefficient of the x term, by 2 to get \frac{19}{4}. Then add the square of \frac{19}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{19}{2}x+\frac{361}{16}=\frac{33}{2}+\frac{361}{16}
Square \frac{19}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{19}{2}x+\frac{361}{16}=\frac{625}{16}
Add \frac{33}{2} to \frac{361}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{19}{4}\right)^{2}=\frac{625}{16}
Factor x^{2}+\frac{19}{2}x+\frac{361}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{4}\right)^{2}}=\sqrt{\frac{625}{16}}
Take the square root of both sides of the equation.
x+\frac{19}{4}=\frac{25}{4} x+\frac{19}{4}=-\frac{25}{4}
Simplify.
x=\frac{3}{2} x=-11
Subtract \frac{19}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}