Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-12x+9-\left(5x+3\right)\left(3-5x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9-\left(9-\left(5x\right)^{2}\right)
Consider \left(5x+3\right)\left(3-5x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
4x^{2}-12x+9-\left(9-5^{2}x^{2}\right)
Expand \left(5x\right)^{2}.
4x^{2}-12x+9-\left(9-25x^{2}\right)
Calculate 5 to the power of 2 and get 25.
4x^{2}-12x+9-9+25x^{2}
To find the opposite of 9-25x^{2}, find the opposite of each term.
4x^{2}-12x+25x^{2}
Subtract 9 from 9 to get 0.
29x^{2}-12x
Combine 4x^{2} and 25x^{2} to get 29x^{2}.
4x^{2}-12x+9-\left(5x+3\right)\left(3-5x\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9-\left(9-\left(5x\right)^{2}\right)
Consider \left(5x+3\right)\left(3-5x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
4x^{2}-12x+9-\left(9-5^{2}x^{2}\right)
Expand \left(5x\right)^{2}.
4x^{2}-12x+9-\left(9-25x^{2}\right)
Calculate 5 to the power of 2 and get 25.
4x^{2}-12x+9-9+25x^{2}
To find the opposite of 9-25x^{2}, find the opposite of each term.
4x^{2}-12x+25x^{2}
Subtract 9 from 9 to get 0.
29x^{2}-12x
Combine 4x^{2} and 25x^{2} to get 29x^{2}.