Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x^{2}-12x+9=8\left(2x-3\right)+65
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=16x-24+65
Use the distributive property to multiply 8 by 2x-3.
4x^{2}-12x+9=16x+41
Add -24 and 65 to get 41.
4x^{2}-12x+9-16x=41
Subtract 16x from both sides.
4x^{2}-28x+9=41
Combine -12x and -16x to get -28x.
4x^{2}-28x+9-41=0
Subtract 41 from both sides.
4x^{2}-28x-32=0
Subtract 41 from 9 to get -32.
x^{2}-7x-8=0
Divide both sides by 4.
a+b=-7 ab=1\left(-8\right)=-8
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
1,-8 2,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -8.
1-8=-7 2-4=-2
Calculate the sum for each pair.
a=-8 b=1
The solution is the pair that gives sum -7.
\left(x^{2}-8x\right)+\left(x-8\right)
Rewrite x^{2}-7x-8 as \left(x^{2}-8x\right)+\left(x-8\right).
x\left(x-8\right)+x-8
Factor out x in x^{2}-8x.
\left(x-8\right)\left(x+1\right)
Factor out common term x-8 by using distributive property.
x=8 x=-1
To find equation solutions, solve x-8=0 and x+1=0.
4x^{2}-12x+9=8\left(2x-3\right)+65
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=16x-24+65
Use the distributive property to multiply 8 by 2x-3.
4x^{2}-12x+9=16x+41
Add -24 and 65 to get 41.
4x^{2}-12x+9-16x=41
Subtract 16x from both sides.
4x^{2}-28x+9=41
Combine -12x and -16x to get -28x.
4x^{2}-28x+9-41=0
Subtract 41 from both sides.
4x^{2}-28x-32=0
Subtract 41 from 9 to get -32.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 4\left(-32\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -28 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 4\left(-32\right)}}{2\times 4}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-16\left(-32\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-28\right)±\sqrt{784+512}}{2\times 4}
Multiply -16 times -32.
x=\frac{-\left(-28\right)±\sqrt{1296}}{2\times 4}
Add 784 to 512.
x=\frac{-\left(-28\right)±36}{2\times 4}
Take the square root of 1296.
x=\frac{28±36}{2\times 4}
The opposite of -28 is 28.
x=\frac{28±36}{8}
Multiply 2 times 4.
x=\frac{64}{8}
Now solve the equation x=\frac{28±36}{8} when ± is plus. Add 28 to 36.
x=8
Divide 64 by 8.
x=-\frac{8}{8}
Now solve the equation x=\frac{28±36}{8} when ± is minus. Subtract 36 from 28.
x=-1
Divide -8 by 8.
x=8 x=-1
The equation is now solved.
4x^{2}-12x+9=8\left(2x-3\right)+65
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=16x-24+65
Use the distributive property to multiply 8 by 2x-3.
4x^{2}-12x+9=16x+41
Add -24 and 65 to get 41.
4x^{2}-12x+9-16x=41
Subtract 16x from both sides.
4x^{2}-28x+9=41
Combine -12x and -16x to get -28x.
4x^{2}-28x=41-9
Subtract 9 from both sides.
4x^{2}-28x=32
Subtract 9 from 41 to get 32.
\frac{4x^{2}-28x}{4}=\frac{32}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{28}{4}\right)x=\frac{32}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-7x=\frac{32}{4}
Divide -28 by 4.
x^{2}-7x=8
Divide 32 by 4.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=8+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=8+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{81}{4}
Add 8 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{81}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{9}{2} x-\frac{7}{2}=-\frac{9}{2}
Simplify.
x=8 x=-1
Add \frac{7}{2} to both sides of the equation.