Solve for x
x=2\sqrt{2}+4\approx 6.828427125
x=4-2\sqrt{2}\approx 1.171572875
Graph
Share
Copied to clipboard
4x^{2}-12x+9=\left(3x-1\right)\left(x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=3x^{2}-4x+1
Use the distributive property to multiply 3x-1 by x-1 and combine like terms.
4x^{2}-12x+9-3x^{2}=-4x+1
Subtract 3x^{2} from both sides.
x^{2}-12x+9=-4x+1
Combine 4x^{2} and -3x^{2} to get x^{2}.
x^{2}-12x+9+4x=1
Add 4x to both sides.
x^{2}-8x+9=1
Combine -12x and 4x to get -8x.
x^{2}-8x+9-1=0
Subtract 1 from both sides.
x^{2}-8x+8=0
Subtract 1 from 9 to get 8.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 8}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-32}}{2}
Multiply -4 times 8.
x=\frac{-\left(-8\right)±\sqrt{32}}{2}
Add 64 to -32.
x=\frac{-\left(-8\right)±4\sqrt{2}}{2}
Take the square root of 32.
x=\frac{8±4\sqrt{2}}{2}
The opposite of -8 is 8.
x=\frac{4\sqrt{2}+8}{2}
Now solve the equation x=\frac{8±4\sqrt{2}}{2} when ± is plus. Add 8 to 4\sqrt{2}.
x=2\sqrt{2}+4
Divide 8+4\sqrt{2} by 2.
x=\frac{8-4\sqrt{2}}{2}
Now solve the equation x=\frac{8±4\sqrt{2}}{2} when ± is minus. Subtract 4\sqrt{2} from 8.
x=4-2\sqrt{2}
Divide 8-4\sqrt{2} by 2.
x=2\sqrt{2}+4 x=4-2\sqrt{2}
The equation is now solved.
4x^{2}-12x+9=\left(3x-1\right)\left(x-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9=3x^{2}-4x+1
Use the distributive property to multiply 3x-1 by x-1 and combine like terms.
4x^{2}-12x+9-3x^{2}=-4x+1
Subtract 3x^{2} from both sides.
x^{2}-12x+9=-4x+1
Combine 4x^{2} and -3x^{2} to get x^{2}.
x^{2}-12x+9+4x=1
Add 4x to both sides.
x^{2}-8x+9=1
Combine -12x and 4x to get -8x.
x^{2}-8x=1-9
Subtract 9 from both sides.
x^{2}-8x=-8
Subtract 9 from 1 to get -8.
x^{2}-8x+\left(-4\right)^{2}=-8+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-8+16
Square -4.
x^{2}-8x+16=8
Add -8 to 16.
\left(x-4\right)^{2}=8
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{8}
Take the square root of both sides of the equation.
x-4=2\sqrt{2} x-4=-2\sqrt{2}
Simplify.
x=2\sqrt{2}+4 x=4-2\sqrt{2}
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}