Evaluate
16x\left(x-7\right)\left(-x-2\right)^{3}+\left(2x-3\right)^{2}
Expand
9+884x+1220x^{2}+480x^{3}+16x^{4}-16x^{5}
Graph
Share
Copied to clipboard
4x^{2}-12x+9+4x\left(x-7\right)\times 4\left(-x-2\right)^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9+16x\left(x-7\right)\left(-x-2\right)^{3}
Multiply 4 and 4 to get 16.
4x^{2}-12x+9+16x\left(x-7\right)\left(\left(-x\right)^{3}-6\left(-x\right)^{2}+12\left(-x\right)-8\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(-x-2\right)^{3}.
4x^{2}-12x+9+16x\left(x-7\right)\left(\left(-x\right)^{3}-6x^{2}+12\left(-x\right)-8\right)
Calculate -x to the power of 2 and get x^{2}.
4x^{2}-12x+9+\left(16x^{2}-112x\right)\left(\left(-x\right)^{3}-6x^{2}+12\left(-x\right)-8\right)
Use the distributive property to multiply 16x by x-7.
4x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-128x^{2}-112x\left(-x\right)^{3}+672x^{3}-1344x\left(-x\right)+896x
Use the distributive property to multiply 16x^{2}-112x by \left(-x\right)^{3}-6x^{2}+12\left(-x\right)-8.
4x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-128x^{2}-112x\left(-x\right)^{3}+672x^{3}+1344xx+896x
Multiply -1344 and -1 to get 1344.
4x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-128x^{2}-112x\left(-x\right)^{3}+672x^{3}+1344x^{2}+896x
Multiply x and x to get x^{2}.
4x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)+1216x^{2}-112x\left(-x\right)^{3}+672x^{3}+896x
Combine -128x^{2} and 1344x^{2} to get 1216x^{2}.
1220x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-112x\left(-x\right)^{3}+672x^{3}+896x
Combine 4x^{2} and 1216x^{2} to get 1220x^{2}.
1220x^{2}+884x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-112x\left(-x\right)^{3}+672x^{3}
Combine -12x and 896x to get 884x.
1220x^{2}+884x+9+16x^{2}\left(-1\right)^{3}x^{3}-96x^{4}+192x^{2}\left(-1\right)x-112x\left(-x\right)^{3}+672x^{3}
Expand \left(-x\right)^{3}.
1220x^{2}+884x+9+16x^{2}\left(-1\right)x^{3}-96x^{4}+192x^{2}\left(-1\right)x-112x\left(-x\right)^{3}+672x^{3}
Calculate -1 to the power of 3 and get -1.
1220x^{2}+884x+9-16x^{2}x^{3}-96x^{4}+192x^{2}\left(-1\right)x-112x\left(-x\right)^{3}+672x^{3}
Multiply 16 and -1 to get -16.
1220x^{2}+884x+9-16x^{5}-96x^{4}+192x^{2}\left(-1\right)x-112x\left(-x\right)^{3}+672x^{3}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
1220x^{2}+884x+9-16x^{5}-96x^{4}+192x^{3}\left(-1\right)-112x\left(-x\right)^{3}+672x^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}-112x\left(-x\right)^{3}+672x^{3}
Multiply 192 and -1 to get -192.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}-112x\left(-1\right)^{3}x^{3}+672x^{3}
Expand \left(-x\right)^{3}.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}-112x\left(-1\right)x^{3}+672x^{3}
Calculate -1 to the power of 3 and get -1.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}+112xx^{3}+672x^{3}
Multiply -112 and -1 to get 112.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}+112x^{4}+672x^{3}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
1220x^{2}+884x+9-16x^{5}+16x^{4}-192x^{3}+672x^{3}
Combine -96x^{4} and 112x^{4} to get 16x^{4}.
1220x^{2}+884x+9-16x^{5}+16x^{4}+480x^{3}
Combine -192x^{3} and 672x^{3} to get 480x^{3}.
4x^{2}-12x+9+4x\left(x-7\right)\times 4\left(-x-2\right)^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9+16x\left(x-7\right)\left(-x-2\right)^{3}
Multiply 4 and 4 to get 16.
4x^{2}-12x+9+16x\left(x-7\right)\left(\left(-x\right)^{3}-6\left(-x\right)^{2}+12\left(-x\right)-8\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(-x-2\right)^{3}.
4x^{2}-12x+9+16x\left(x-7\right)\left(\left(-x\right)^{3}-6x^{2}+12\left(-x\right)-8\right)
Calculate -x to the power of 2 and get x^{2}.
4x^{2}-12x+9+\left(16x^{2}-112x\right)\left(\left(-x\right)^{3}-6x^{2}+12\left(-x\right)-8\right)
Use the distributive property to multiply 16x by x-7.
4x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-128x^{2}-112x\left(-x\right)^{3}+672x^{3}-1344x\left(-x\right)+896x
Use the distributive property to multiply 16x^{2}-112x by \left(-x\right)^{3}-6x^{2}+12\left(-x\right)-8.
4x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-128x^{2}-112x\left(-x\right)^{3}+672x^{3}+1344xx+896x
Multiply -1344 and -1 to get 1344.
4x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-128x^{2}-112x\left(-x\right)^{3}+672x^{3}+1344x^{2}+896x
Multiply x and x to get x^{2}.
4x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)+1216x^{2}-112x\left(-x\right)^{3}+672x^{3}+896x
Combine -128x^{2} and 1344x^{2} to get 1216x^{2}.
1220x^{2}-12x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-112x\left(-x\right)^{3}+672x^{3}+896x
Combine 4x^{2} and 1216x^{2} to get 1220x^{2}.
1220x^{2}+884x+9+16x^{2}\left(-x\right)^{3}-96x^{4}+192x^{2}\left(-x\right)-112x\left(-x\right)^{3}+672x^{3}
Combine -12x and 896x to get 884x.
1220x^{2}+884x+9+16x^{2}\left(-1\right)^{3}x^{3}-96x^{4}+192x^{2}\left(-1\right)x-112x\left(-x\right)^{3}+672x^{3}
Expand \left(-x\right)^{3}.
1220x^{2}+884x+9+16x^{2}\left(-1\right)x^{3}-96x^{4}+192x^{2}\left(-1\right)x-112x\left(-x\right)^{3}+672x^{3}
Calculate -1 to the power of 3 and get -1.
1220x^{2}+884x+9-16x^{2}x^{3}-96x^{4}+192x^{2}\left(-1\right)x-112x\left(-x\right)^{3}+672x^{3}
Multiply 16 and -1 to get -16.
1220x^{2}+884x+9-16x^{5}-96x^{4}+192x^{2}\left(-1\right)x-112x\left(-x\right)^{3}+672x^{3}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
1220x^{2}+884x+9-16x^{5}-96x^{4}+192x^{3}\left(-1\right)-112x\left(-x\right)^{3}+672x^{3}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}-112x\left(-x\right)^{3}+672x^{3}
Multiply 192 and -1 to get -192.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}-112x\left(-1\right)^{3}x^{3}+672x^{3}
Expand \left(-x\right)^{3}.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}-112x\left(-1\right)x^{3}+672x^{3}
Calculate -1 to the power of 3 and get -1.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}+112xx^{3}+672x^{3}
Multiply -112 and -1 to get 112.
1220x^{2}+884x+9-16x^{5}-96x^{4}-192x^{3}+112x^{4}+672x^{3}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
1220x^{2}+884x+9-16x^{5}+16x^{4}-192x^{3}+672x^{3}
Combine -96x^{4} and 112x^{4} to get 16x^{4}.
1220x^{2}+884x+9-16x^{5}+16x^{4}+480x^{3}
Combine -192x^{3} and 672x^{3} to get 480x^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}