Solve for x
x = \frac{3 \sqrt{5} + 3}{2} \approx 4.854101966
x=\frac{3-3\sqrt{5}}{2}\approx -1.854101966
Graph
Share
Copied to clipboard
4x^{2}-12x+9+\sqrt{25}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9+5=50
Calculate the square root of 25 and get 5.
4x^{2}-12x+14=50
Add 9 and 5 to get 14.
4x^{2}-12x+14-50=0
Subtract 50 from both sides.
4x^{2}-12x-36=0
Subtract 50 from 14 to get -36.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-36\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -12 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-36\right)}}{2\times 4}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-36\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-12\right)±\sqrt{144+576}}{2\times 4}
Multiply -16 times -36.
x=\frac{-\left(-12\right)±\sqrt{720}}{2\times 4}
Add 144 to 576.
x=\frac{-\left(-12\right)±12\sqrt{5}}{2\times 4}
Take the square root of 720.
x=\frac{12±12\sqrt{5}}{2\times 4}
The opposite of -12 is 12.
x=\frac{12±12\sqrt{5}}{8}
Multiply 2 times 4.
x=\frac{12\sqrt{5}+12}{8}
Now solve the equation x=\frac{12±12\sqrt{5}}{8} when ± is plus. Add 12 to 12\sqrt{5}.
x=\frac{3\sqrt{5}+3}{2}
Divide 12+12\sqrt{5} by 8.
x=\frac{12-12\sqrt{5}}{8}
Now solve the equation x=\frac{12±12\sqrt{5}}{8} when ± is minus. Subtract 12\sqrt{5} from 12.
x=\frac{3-3\sqrt{5}}{2}
Divide 12-12\sqrt{5} by 8.
x=\frac{3\sqrt{5}+3}{2} x=\frac{3-3\sqrt{5}}{2}
The equation is now solved.
4x^{2}-12x+9+\sqrt{25}=50
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-3\right)^{2}.
4x^{2}-12x+9+5=50
Calculate the square root of 25 and get 5.
4x^{2}-12x+14=50
Add 9 and 5 to get 14.
4x^{2}-12x=50-14
Subtract 14 from both sides.
4x^{2}-12x=36
Subtract 14 from 50 to get 36.
\frac{4x^{2}-12x}{4}=\frac{36}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{12}{4}\right)x=\frac{36}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-3x=\frac{36}{4}
Divide -12 by 4.
x^{2}-3x=9
Divide 36 by 4.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=9+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=9+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{45}{4}
Add 9 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{45}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{3\sqrt{5}}{2} x-\frac{3}{2}=-\frac{3\sqrt{5}}{2}
Simplify.
x=\frac{3\sqrt{5}+3}{2} x=\frac{3-3\sqrt{5}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}