Solve for x
x = \frac{\sqrt{37} + 7}{4} \approx 3.270690633
x=\frac{7-\sqrt{37}}{4}\approx 0.229309367
Graph
Share
Copied to clipboard
2x-3+x^{2}+10x+25+\left(2x+3-\left(x-5\right)\right)^{2}=10x^{2}+92
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
12x-3+x^{2}+25+\left(2x+3-\left(x-5\right)\right)^{2}=10x^{2}+92
Combine 2x and 10x to get 12x.
12x+22+x^{2}+\left(2x+3-\left(x-5\right)\right)^{2}=10x^{2}+92
Add -3 and 25 to get 22.
12x+22+x^{2}+\left(2x+3-x+5\right)^{2}=10x^{2}+92
To find the opposite of x-5, find the opposite of each term.
12x+22+x^{2}+\left(x+3+5\right)^{2}=10x^{2}+92
Combine 2x and -x to get x.
12x+22+x^{2}+\left(x+8\right)^{2}=10x^{2}+92
Add 3 and 5 to get 8.
12x+22+x^{2}+x^{2}+16x+64=10x^{2}+92
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+8\right)^{2}.
12x+22+2x^{2}+16x+64=10x^{2}+92
Combine x^{2} and x^{2} to get 2x^{2}.
28x+22+2x^{2}+64=10x^{2}+92
Combine 12x and 16x to get 28x.
28x+86+2x^{2}=10x^{2}+92
Add 22 and 64 to get 86.
28x+86+2x^{2}-10x^{2}=92
Subtract 10x^{2} from both sides.
28x+86-8x^{2}=92
Combine 2x^{2} and -10x^{2} to get -8x^{2}.
28x+86-8x^{2}-92=0
Subtract 92 from both sides.
28x-6-8x^{2}=0
Subtract 92 from 86 to get -6.
-8x^{2}+28x-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\left(-8\right)\left(-6\right)}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 28 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-8\right)\left(-6\right)}}{2\left(-8\right)}
Square 28.
x=\frac{-28±\sqrt{784+32\left(-6\right)}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-28±\sqrt{784-192}}{2\left(-8\right)}
Multiply 32 times -6.
x=\frac{-28±\sqrt{592}}{2\left(-8\right)}
Add 784 to -192.
x=\frac{-28±4\sqrt{37}}{2\left(-8\right)}
Take the square root of 592.
x=\frac{-28±4\sqrt{37}}{-16}
Multiply 2 times -8.
x=\frac{4\sqrt{37}-28}{-16}
Now solve the equation x=\frac{-28±4\sqrt{37}}{-16} when ± is plus. Add -28 to 4\sqrt{37}.
x=\frac{7-\sqrt{37}}{4}
Divide -28+4\sqrt{37} by -16.
x=\frac{-4\sqrt{37}-28}{-16}
Now solve the equation x=\frac{-28±4\sqrt{37}}{-16} when ± is minus. Subtract 4\sqrt{37} from -28.
x=\frac{\sqrt{37}+7}{4}
Divide -28-4\sqrt{37} by -16.
x=\frac{7-\sqrt{37}}{4} x=\frac{\sqrt{37}+7}{4}
The equation is now solved.
2x-3+x^{2}+10x+25+\left(2x+3-\left(x-5\right)\right)^{2}=10x^{2}+92
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
12x-3+x^{2}+25+\left(2x+3-\left(x-5\right)\right)^{2}=10x^{2}+92
Combine 2x and 10x to get 12x.
12x+22+x^{2}+\left(2x+3-\left(x-5\right)\right)^{2}=10x^{2}+92
Add -3 and 25 to get 22.
12x+22+x^{2}+\left(2x+3-x+5\right)^{2}=10x^{2}+92
To find the opposite of x-5, find the opposite of each term.
12x+22+x^{2}+\left(x+3+5\right)^{2}=10x^{2}+92
Combine 2x and -x to get x.
12x+22+x^{2}+\left(x+8\right)^{2}=10x^{2}+92
Add 3 and 5 to get 8.
12x+22+x^{2}+x^{2}+16x+64=10x^{2}+92
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+8\right)^{2}.
12x+22+2x^{2}+16x+64=10x^{2}+92
Combine x^{2} and x^{2} to get 2x^{2}.
28x+22+2x^{2}+64=10x^{2}+92
Combine 12x and 16x to get 28x.
28x+86+2x^{2}=10x^{2}+92
Add 22 and 64 to get 86.
28x+86+2x^{2}-10x^{2}=92
Subtract 10x^{2} from both sides.
28x+86-8x^{2}=92
Combine 2x^{2} and -10x^{2} to get -8x^{2}.
28x-8x^{2}=92-86
Subtract 86 from both sides.
28x-8x^{2}=6
Subtract 86 from 92 to get 6.
-8x^{2}+28x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+28x}{-8}=\frac{6}{-8}
Divide both sides by -8.
x^{2}+\frac{28}{-8}x=\frac{6}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-\frac{7}{2}x=\frac{6}{-8}
Reduce the fraction \frac{28}{-8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{7}{2}x=-\frac{3}{4}
Reduce the fraction \frac{6}{-8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{3}{4}+\left(-\frac{7}{4}\right)^{2}
Divide -\frac{7}{2}, the coefficient of the x term, by 2 to get -\frac{7}{4}. Then add the square of -\frac{7}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{4}+\frac{49}{16}
Square -\frac{7}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{37}{16}
Add -\frac{3}{4} to \frac{49}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{4}\right)^{2}=\frac{37}{16}
Factor x^{2}-\frac{7}{2}x+\frac{49}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{37}{16}}
Take the square root of both sides of the equation.
x-\frac{7}{4}=\frac{\sqrt{37}}{4} x-\frac{7}{4}=-\frac{\sqrt{37}}{4}
Simplify.
x=\frac{\sqrt{37}+7}{4} x=\frac{7-\sqrt{37}}{4}
Add \frac{7}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}